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Abstract

The common view in web engineering of what constitutes a web application has
been static for a long time. This thesis presents a variety of perspectives on
web applications. Through a study (n = 6) we document the breadth of web
application architectures in use; and present a novel method for documenting
and evaluating architecture evolution, with an emphasis on common patterns
of evolution. We offer arguments that connect web engineering to database
and distributed systems research, establishing web applications as inherently
weakly consistent systems; and present a taxonomy of data in web applications
focusing on the refinement of data. The study is of limited size and poorly
geographically distributed leading to poor generalizability of the results, but
they offer an indication of both novel perspectives and novel findings that can
be further investigated.

We contribute (i) a method for describing architecture evolution and find-
ing common narratives across evolutions; (ii) the establishing of variety in web
application architectures; (iii) identification of some common narratives of archi-
tecture evolution; (iv) the argument that existing frameworks for architectural
change are not universally useful; (v) a connection between distributed systems
research and web engineering; (vi) a connection between the concept of view
maintenance and web engineering; and (vii) an indication of how data is stored
and generated in web applications, and which approaches are unexplored.
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Chapter 1

Introduction

The perspectives available to us decide what information we can learn. That
is, the tools we use to explore a topic decide the realm of what is possible to
uncover, and at the same time steer our view on things in such a way that
they may blind us to other perspectives on the same subject matter. To avoid
tunnel-vision in the exploration of a subject, employing several perspectives at
once may reveal broader insights than would otherwise be possible. For several
perspectives to be possible, however, several different tools that enable those
perspectives must be available, too.1

Web engineering is a field that has previously been described as encom-
passing research from many other fields, such as “systems analysis and design;
software engineering; hypermedia and hypertext engineering; requirements engi-
neering; human-computer interaction; user interface development; information
engineering; information indexing and retrieval; testing, modeling, and simu-
lation; project management; and graphic design and presentation” [36]. This
thesis focuses on the perspectives software architecture (and especially architec-
ture evolution), distributed systems, and database research, while the subject
under study from these perspectives is web applications. It can best be described
as a web engineering thesis, but emphasis is on connecting research from other
fields, rather than further specializing the web engineering niche.

Recent web engineering research has focused on the effort of constructing web
applications, while many assumptions of what a web application is—that is, the
variety of forms a web application may take—have been left fairly unchallenged.
No research, to our knowledge, has focused on attempting to document what
variety and breadth of web application architectures exist, and thereby what the
established possibility space of web applications is in practice. Meanwhile, the
use of web applications is changing and increasing, and the lack of reevaluation

1 An example of this principle in practice is architectural views in the field of software
architecture, which provide different perspectives on an architecture, in order to help the
reader of such views understand different facts. “Modern systems are more than complex
enough to make it difficult to grasp them all at once,” so an all-encompassing view would not
be useful [15].
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of core ideas of web applications leaves the web engineering field at risk of
working with an inaccurate representation of the practical field it purports to
study.

Architecture evolution or architecture change research deals with changes
to and maintenance of software, and the activities involved [13, 54, 67]. A
wealth of frameworks for architectural work, and several for architectural change
alone, exist. However, many of these frameworks take an approach that may
be described as prematurely prescriptive [7, 67], based on a well-intentioned
desire to provide actionable information, but with insignificant amounts of real-
world data to support the theoretical constructions. A side effect of frameworks
aiming to draw out a clear path of action for users of the framework is that
they are often defined as providing the ultimate perspective on some subject—
if a framework was not the ultimate, all-encompassing perspective, how can its
prescription for future action be trusted? An alternative approach would see
frameworks as complimentary, providing different perspectives that reinforce or
inform each other, and thus provide a more nuanced view to the user of those
frameworks, leaving decisions to the user.

Distributed computing and database research are both fields that see a lot
of work. Distributed computing concerns making systems composed of several
nodes work together in a way that provides incredible scalability and availability
as well as low latency, while making informed tradeoffs in consistency and how
network partitions will be dealt with [28, 29, 66]. Database research has some
overlap, as databases may themselves be distributed systems. For this thesis, the
work on the semantics and maintenance of structured data from the database
field is particularly relevant [39, 43].

While both fields are connected to web engineering in that many web ap-
plications rely on storage systems that may be of some complexity [61], the
connection is limited. Web applications are often constructed in such a way
that they contain no state, and can therefore be trivially scaled, pushing the
real concerns of the distributed systems field to the data layer, which relies on
commodity systems, leaving the properties of the web application as a whole un-
investigated. Web applications are inherently distributed systems, as they rely
on the client-server model of communication [23], and the connection between
distributed systems research and web engineering and the connection between
database research and web engineering could be made more explicit, to the
benefit of both fields of research.

This thesis provides several new perspectives on web applications and web
architecture change frameworks, and a way of bridging distributed computing
and database research with web engineering. The aim is to answer the following
research questions, representing a variety of perspectives on web applications,
through interviews with companies that have web-based products with a com-
mon starting point:

RQ1 How do layered web applications commonly change over the course of
their existence?

RQ2 To what extent do existing architectural change classification frameworks
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shed light on the reasons behind and effect of common architectural changes?

RQ3 What forms do web application architectures take, and what variation
exists in this regard?

RQ4 Which architecture-centric practices are used in the development of web
applications?

RQ5 Which types of data is persisted in web applications, and what triggers
its generation?

More specifically, the contributions of the thesis are:

• A method for reconstructing architecture evolution paths based on inter-
views, as well as finding common narratives—a concept translated from
narrative analysis in the field of sociology—in such paths.

• Data showing the breadth and variety of web application architectures.

• Data showing some common narratives of architecture evolution—orders
of progression shared by multiple architectures.

• An evaluation of two change evaluation frameworks, showing that their
perspective is not universally valuable.

• An argument connecting distributed systems research to web engineer-
ing, showing that strongly consistent web applications are infeasible to
construct.

• A taxonomy connecting database research on materialized views and view
maintenance to web engineering, allowing for methods used in database
research to be applied to web applications, and hinting at a larger theo-
retical framework for web applications.

• An evaluation of the taxonomy (previous bullet) indicating some of the
current breadth of data generation triggers and persistence locations in
web applications.

The rest of the thesis is structured as follows. In chapter 2 we present the
research related to the thesis, establishing the background knowledge necessary
for the reading of the thesis. Chapter 3 introduces the study design for a study
of six companies located in Denmark, focusing on architecture evolution of their
web applications. Chapter 4 evaluates the results of the study with a focus on
the breadth of web application architectures and architectural patterns.

Chapter 5 likewise evaluates the results of the study, this time with an em-
phasis on architectural evolution. We evaluate two frameworks for architectural
change for their usefulness in revealing patterns of evolution, and apply a novel
method for constructing architecture evolution paths and analyzing them with
an aim of finding common progression patterns.
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Chapter 6 connects distributed systems and database research to web en-
gineering, arguing that web applications are inherently weakly consistent, and
presenting a taxonomy from understanding web applications that allows for the
application of database research theory. The taxonomy is used to show a variety
in approaches to data refinement and persistence in the companies interviewed
for the study presented in chapter 3.

Finally, chapter 7 concludes the thesis, connecting the findings and pointing
at potential future directions of web engineering research, most notably hinting
at formalizations of web architectures through the exploration of refinement
functions and response generation strategies—terms introduced in this thesis.
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Chapter 2

Background

Summary This chapter introduces the research relevant to understanding the
thesis. In section 2.1 we present relevant research on web applications, including
a history, our working definition of a web application, a look at scalability as a
property of web applications, and views on data in applications. In section 2.2
we look at approaches to characterizing changes in software architectures, and
introduce architectural patterns that will be relevant in the thesis. Section 2.3
presents relevant research in distributed systems and databases. Finally, section
2.4 presents existing work in applying narrative analysis to the field of software
engineering.

2.1 Web applications
The World Wide Web (or W3, as it has been referred to; or simply the web
today) from which web applications get their name was introduced in 1992 as
an information sharing system. The name is a metaphor for the world-spanning
web of information that the technology would allow for. The goal with the web
was to create a system in which information was easily accessible, usable by a
broad audience, and to which it was also easy to add more information [11].

To support this goal, the web was designed as a client-server architecture—
in which clients would request information from servers—and introduced some
new technologies. The original paper introduced a hypertext language, Hyper-
Text Markup Language (HTML), a language based on the Standard Generalized
Markup Langauge (SGML) standard; and it introduced a protocol for transfer-
ring hypertext documents between client and server, the HyperText Transfer
Protocol, HTTP [10].

The protocol allowed for negotiation of content types (supporting other for-
mats than just HTML), and supported both static (unchanging, and in the
original case, presumably hand-written) and dynamic (generated by a pro-
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gram) content, with the original paper recommending modifying the sample web
server code they provided to function as a more dynamic interface to underlying
databases. The sample server code would automatically serve content according
to a directory structure, making it easy to share static content. Aggregation of
information from other services was described already in the beginning [10].

There are several ways of sharing information on the web. Web pages were
single pages, usually maintained by an individual and hosted on an organiza-
tion’s server, were popular in the early days of the web. Web sites—curated
collections of pages—were initially only accessible to organizations with the re-
quired funds for running a server, but in time became more accessible. The term
used for more interactive types of web sites, in which a focus on interaction and
business logic was more pronounced, and the content was to a larger extent
dynamic, was web application [61].

Web services are web servers that provide interfaces only for other programs
to interact with, and no human-oriented interfaces [61]. As we noted above,
program-to-program interaction over the internet was already an established
practice at the beginning of the web, but web services increased the popularity
of the approach. The defining characteristic of web services is the use of web
technologies in communicating between applications, on web clients or other web
servers. Service-Oriented Architecture (SOA) emphasized the usefulness of web
services by splitting large applications into several services, all communicating
among each other and with clients using a standardized protocol, that allowed
for automatic discovery of services [57].

The term web application allows for the broadest interpretation of all the
terms we have introduced, as it encompasses all systems in which a client and
server interact using web technologies. Even in cases where a commodity web
server is used to serve static files, the server and clients form a client-server
application.

Around the year 2000 the most common approach for any kind of web ap-
plication was using a standardized web server for serving static or dynamic
content. There were various approaches to the latter, but one of the more
common approaches was the Common Gateway Interface (CGI) [61].

When determining how to respond to a request, it was a common approach
for servers to inspect the requested URL path. For example, when using CGI,
the server might be configured to look for URL paths containing /cgi-bin/
or ending in .cgi. In this case, the server would execute a program to which
the HTTP request body, headers and other relevant information was passed as
input. FastCGI provided a speed-up by not having to start a new program with
each request, allowing instead for a single long-running program to respond to
several requests, minimizing overhead. Still, the server and application code
were usually kept as entirely separate programs. Commonly the program exe-
cuted would be the one located at the file location described by the URL path,
with each valid request path mapping to a file on the server machine. Perl was
a common CGI-language, and approaches similar to CGI were used by PHP,
Java Servlets, and many other programming environments [61].

Web servers, the servers in web applications, performing certain steps once
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they receive a request. They (i) parse the request, (ii) decide on how to respond,
(iii) fetch required data, (iv) generate a response, and (v) send the response to
the client [61]. There may not be any data required for generating a response,
in which case this step is trivial. Generation of a response is used loosely, and
may be as simple as reading static content from a file.

Web browsers, the most common clients in web applications, are an execution
platform onto themselves. Historically, both technologies such as Java Applets
or Flash were used to provide interactivity and execution on the client. Today,
the most common approach is Javascript, which is executed natively by the
browser (whereas Java Applets and Flash required plugins) [52].

Fielding & Taylor define the architectural style used in "well-behaved" web
applications as Representational State Transfer (REST). This architectural style
describes a refinement of the client-server architectural style, where communi-
cation between client and server is stateless (e.g. each request and response is
independently understandable without knowing previous requests or responses),
with cacheability (such that the communication clearly states which values may
be cached), and communicating over a uniform interface [23]. In web appli-
cations, this uniform interface would be HTTP. Finally, REST architectures
support code-on-demand (CoD) where client functionality is downloaded on de-
mand from the server [23]. In web applications this is achieved through servers
responding with markup that is evaluated by browsers as an instruction to ex-
ecute some code.

The notion of well-behaved web applications somewhat limits the generaliz-
ability of the REST pattern. It is possible to communicate using HTTP and
providing a valuable user experience without adhering to the architectural style
described. The architectural style has seen strong adoption in web services,
where the transfer of state is the primary concern [60].

Many early web application servers were structured in such a way that a
clearly defined presentation layer (often using templating languages) commu-
nicated with a business logic layer, which in turn communicated with a data
layer [61]. We will refer to this as a layered web application server, as this agree
with the description of the layered architectural style [9, p. 37]. Some web
application frameworks1 provided a different model for web application organi-
zation, in which routes were more explicitly defined, decoupling them from a
directory structure [61]. This is the approach we now commonly see in modern
Model-View-Controller (MVC) frameworks, such as Ruby on Rails [63].

The MVC pattern was originally used to describe a single input element that
a user might interact with. Used in this context, the visual part is described by
the View, the underlying data and business logic contained in the Model, and the

1 Web application frameworks such as Ruby on Rails (and many others that use the label)
might more accurately be referred to as web application server frameworks, as they provide
ways of structuring the sever side of a web application, but rarely significantly impact or
provide structure for the client side. This is in contrast to those frameworks that provide
structure for the client side of a web application, which may more accurately be dubbed web
application client frameworks. A web application framework would then encompass both of
these concerns.
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Controller is responsible for reacting to user input. This is also how the pattern
was first attempted introduced to web applications, with an approach where
components’ models and controllers could be flexibly placed on the server or
client depending on where it would be most efficient to perform business-related
computations. In other words, the pattern was employed to make it easier to
find a balance between a thick or thin client—that is, a client with much logic, or
one with very little [47]. MVC frameworks such as Ruby on Rails use MVC as a
code organization principle, in which the code in the application is split between
models, views, and controllers, but where the granularity is typically an entire
request at a time, rather than individual components [63]. The pattern used
in MVC web frameworks bears little resemblance to the pattern as originally
intended and used, other than in name. Significantly, modern MVC frameworks
offer no way of easily moving execution responsibility between client and server.
In fact, the MVC pattern in such frameworks refers only to the server-side
organization of code, and has no impact on potential client-side execution.

More recent web server frameworks, such as Express (a Node.js framework),
take the same approach as MVC frameworks of separating paths allowed on the
web server from any underlying file system. Unlike MVC frameworks, however,
they do not rely on separate server software in order to parse incoming requests
[70]. In fact, several newer languages—such as Node.js and Rust—provide stan-
dard library support for constructing HTTP servers [76, 77].

Web browsers have (in accordance with Fielding & Taylor’s definition of
well-behaved web applications) built-in caching, caching results that the web
server indicates are cacheable, in order to provide faster response times next
time the same resource is requested [61]. Caching has also been utilized on the
server side. Static resources can be trivially cached. In order to work with
dynamic content, caches need a way to know when the data has gone stale
and needs replacing. For rarely changing content, the common way of ensuring
cache invalidation is setting a time-to-live on each document, so it is refreshed
once in a while, and for more commonly changing content—or in cases where
it is critical that responses are up to date—the web application will need to
manually implement cache invalidation [42, 65].

Web 2.0 was a term popularly used to denote a new type of interaction
and use of the internet, a move from publishing to interactive systems ”with
PC-equivalent interactivity,“ that became common around 2001. In Web 2.0,
the network is considered the platform with execution “spanning all connected
devices”. Thicker clients became more common, as exemplified by Java Applets,
Flash, and Javascript applications. Ajax (Asynchronous Javascript and XML)
became a popular pattern used in code executed on web application clients,
allowing for more dynamic user experiences [52].

Ajax fundamentally changed the model of interaction in browsers, moving
away from the interaction model where each user action would result in a new
document being displayed, and towards a model in which the web page be-
came dynamic and changing, relying on asynchronous (no page reload needed)
requests to the server for more data [34], “going beyond the page metaphor
of Web 1.0 to deliver rich user experiences” [52]. This had previously only

8



Term Meaning
Web page A single HTML document, often manually maintained by an in-

dividual.
Web site A collection of web pages, presented as a coherent experience,

often maintained by an organization.
Web application Traditionally used as a way to distinguish more complex applica-

tions on the web from simple, static web sites. Commonly used
to describe all modern applications served via the web.

Web service A web application server that provides a data-based interface tar-
geted at other applications, rather than users.

Web server The server part of the client-server architecture that makes up a
web application. It receives requests from clients, interprets them,
determines the appropriate response, and sends this to the client.

Web client The client part of the client-server architecture that makes up a
web application. It commonly takes the form of a web browser,
reacting to user input. It sends requests to the server, and renders
and makes interactive that which is sent as a response from the
server.

Static content Content that does not change based on user or other interaction.
Most commonly used about the data in the server part of the
web application, to denote pages or responses that are always the
same.

Dynamic content The opposite of static content, dynamic content changes based on
user or other interaction. From the web server perspective, this
is often content that is generated based on a particular request
from a client (this is the definition of Iyengar & Challenger [42]);
but may also relate to any content that is backed by a database,
however it is generated (the definition used by O’Reilly [52]). (The
two definitions overlap but are not equivalent.)

Thin client A client that does very little in terms of execution based on the
responses it gets from a web server.

Thick client A client that functions as a significant execution platform, per-
forming many actions.

Table 2.1: Terms used in relation to web applications
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been seen done with plugins, but was not possible as a native experience in
the browser. In this new world of distributed execution platforms, and with
increasingly dynamic content, database operations became a core competency
in web engineering [52].

Many of the ideas of Ajax have lived on in Single-Page Web Applications
(SPAs). Technologies such as Flash or Java Applets could be (and were) used to
construct Single Page Applications, but the approach was popularized relying
on Javascript and Ajax. Much like Ajax, a Single Page Application denotes
applications executed in the browser that are detached from the document model
that the web originated with, requiring no page reloads to deliver data. SPAs
take the approach of Ajax as far as possible, delivering most of the business
logic of a web application, as well as all of the templates for all views that may
be displayed in an initial response from the server. Once the SPA is loaded,
the user’s interaction with the web application will never require the reloading
of a document in the browser, and the client’s experience of the application is
no longer affected by long load response generation times on the server, that
would normally result in a blank screen during loading of each response. In
SPAs, web servers are lean and focus on “services like persistent data storage,
data validation, user authentication, and data synchronization” [50].

One downside of single page applications is a large initial load time, as the
initial response is parsed and executed on the client. Static site generators use
a different approach to avoiding response generation on the web application
server, which may take a long time and result in a jagged user experience.
Static site generators allow for complex sites of entirely static content to be
generated based on data. They are often used for web applications where the
primary content of the application rarely changes (e.g. a blog, in which posts
are published at most a couple of times per day). Every time new content is
release, the static files are rebuilt, resulting in the new state being served by the
web server [59].

The JAMstack (Javascript, APIs, Markup) describes an approach to static
sites in which the user experience is enhanced by using Javascript to commu-
nicate to exernal services [74]. For example, an external service might enable
comments on the blog posts of the blog. The comment system will not be avail-
able with the first rendering in the browser, as this only renders the static blog
post content, but execution of Javascript code will enable the comments system.

JAMstack avoids the large up-front loading of all potential views of an appli-
cation that are necessary in SPAs, and avoids the majority of the work performed
on a web server in order to display a dynamic (but rarely changing) view to a
user, as this has now been performed at deployment time. Static files can be
geographically distributed and with high availability using Content Distribu-
tion Networks (CDNs), resulting in a reduction of latency between clients and
servers [74].

Progressive Web Apps (PWAs) are an approach to building web applications
that allows for the core content to be preemptively cached on clients and made
available even when the clients are offline. Further, they let web applications be
perceived as more native on mobile devices, as browsers let users install PWAs
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on their home screens [12]. The static content of static sites is no longer just
distributed to a CDN, but all the way onto the client devices.

Curiously, many of the advancements in client interaction with servers we
have presented above have been touted as performance improvements, despite
moving in seemingly opposite directions: Ajax and SPAs were introduced to
make the web more responsive, but resulted in larger initial loads; the JAMstack
and static site generators were introduced because of the long up-front load times
of SPAs—all in the name of performance improvements. All of the technologies
have been described as bringing more desktop-like experiences to the web [12,
34, 50, 59]. Over time, it seems, a balance is being established, where the web
can provide a dynamic user experience with minimal performance penalty over
static content.

New features in browsers allow for clients that take on ever more respon-
sibility, enabling them to act more like nodes in a distributed system, moving
beyond the client-server pattern. Web sockets provide a means for more direct
communication between a client and some other server, no longer relying on the
browser’s handling of HTTP requests [75], and there are examples of libraries
allowing browsers to execute peer-to-peer file sharing protocols [78], or turning
browsers into nodes in a distributed data store [72]. In other words, web ap-
plication clients seem to be evolving beyond the notion of thick clients—as the
possible space of their responsibilities change—and into something more akin
to a node in a distributed system.

2.1.1 A definition of web applications
What is a web application? We have established a brief history of web applica-
tions, as well as an architectural definition of what a web application is (recall
Fielding & Taylor). However, the perspective on what exactly constitutes the
application, and what should be included when considering properties of the
web application, has not been constant. By examining various perspectives
(and keeping in mind the way the web has changed), we will attempt to argue
for a present-time conception of what constitutes a web application.

With the very first version of web applications, the client was a static pre-
sentation layer, with no execution environment. As such, the only part of the
web application that could be affected was the code executed by the web server
[10]. Even after dynamic content became common, provided by servers that ex-
ecuted small programs in order to generate documents on-demand, clients were
fairly static in their capabilities. It was uncommon to see more than simple
enhancements to user experience done on the client side [61], despite business
logic execution on the client having been conceived of and experimented with
before the web was ten years old [47].

The perspective of what constituted an executing part of a web application
started to change with Web 2.0, where clients became thicker and presented
more interactive user experiences [52]. Today, web clients function as thick
clients, executing much of the business logic involved in interacting with a web
application [50], even moving beyond the client-server model of communication.
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Conallen, in a 1999 paper on modeling web applications with UML, offers
this loose definition of a web system [16]:

a web system (web server, network, HTTP, browser) where user
input (navigation and data input) affects the state of the business

Conallen notes that the definition “attempts to establish that a web applica-
tion is a software system with business state, and that its ‘front end’ is in large
part delivered via a web system”. Unique to a web application (and not present
in web sites), Conallen argues, is the business logic and state being manipulated
by users [16].

Likewise in 1999, in a paper on object-oriented web development, Gellersen
& Gaedke define a web application as “any software application that depends
on the Web for its correct execution”. They explicitly include in their definition
“Web sites or Web-based journals”, where emphasis is on content, as well as
those things that Conallen would characterize as web applications, namely where
business logic is executed [35]. Gellersen & Gaedke do not explicitly mention
the client as an important part of a web application, but note that they consider
anything that is delivered via the web to be a web application. As such, the
client in the client-server system must be understood to be significant.

In the 2002 paper introducing REST, Fielding & Taylor describe a well-
behaved web application as one in which “a network of Web pages forms a virtual
state machine, allowing a user to progress through the application by selecting
a link or submitting a short data-entry form, with each action resulting in a
transition to the next state of the application by transferring a representation
of that state to the user” [23]. We take web pages here to be understood in the
broadest possible sense: responses from the web application, which allows for
other clients than simply a browser. Fielding & Taylor go on to describe the
types of components of a web application [23]:

A user agent uses a client connector to initiate a request and becomes
the ultimate recipient of the response. The most common example
is a Web browser [...]
An origin server uses a server connector to govern the namespace for
a requested resource. It is the definitive source for representations
of its resources and must be the ultimate recipient of any request
that intends to modify the value of its resources. [...]
Intermediary components act as both a client and a server in or-
der to forward, with possible translation, requests and responses.
A proxy component is an intermediary selected by a client to pro-
vide interface encapsulation of other services, data translation, per-
formance enhancement, or security protection. A gateway (a.k.a.,
reverse proxy) component is an intermediary imposed by the net-
work or origin server to provide an interface encapsulation of other
services, for data translation, performance enhancement, or secu-
rity enforcement. Note that the difference between a proxy and a
gateway is that a client determines when it will use a proxy.
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This list of components uses slightly different names than we have used
thus far: we refer to user agents as clients, and origin servers as web servers.
Other than that, the list conforms readily with the other definitions we have
encountered, with the explicit addition of intermediary components.

In their 2003 book on web application architecture, Shklar & Rosen talk
about web applications as “custom applications that operate within the con-
text of a Web server environment, communicating with other Web applications,
servers, and clients”, noting that “[i]n the past, an ‘application’ was defined as
a program [...] which executes on a single system,” but this changes for client-
server applications, where processing is distributed between server and client
machines [61]. As a more formal definition, they offer the following [61]:

A Web application is a client-server application that (generally) uses
the Web browser as its client. Browsers send requests to servers,
and the servers generate responses and return them to the browsers.
They differ from older client-server applications because they make
use of a common client program, namely the Web browser.

Shklar & Rosen go on to note that web applications are best thought of
as multi-tier architectures, in which a client application communicates with a
server application, which in turn communicates with a database or some other
service [61]. Seeing web applications as multi-tier is consistent with Fielding &
Taylor’s inclusion of intermediary components.

Common for all the above definitions is that the client is an integral part
of the web application. However, none of them discuss any limitations to the
architecture of web servers (although we have illustrated some common ap-
proaches). We conclude that a web application server may be any arbitrarily
complex system, as long as it performs the role as set out in the definitions
above, responding to HTTP requests in the appropriate manner.

Our suggestion for a modern, and encompassing, definition of a web applica-
tion—and the one we will be in the discussion of properties of such applications—
takes the following form:

A web application is a client-server application with any number of clients
and servers, in which client-server communication happens via HTTP, in which
both client and server may be execution environments, and in which the server
may be any arbitrarily complex system in itself.

This definition encompasses everything from static sites as well as arbitrarily
complex architectures; from services that transfer only data, to web applications
with a complex SPA executed on the client. It includes, also, web applications
with several web servers, contacted for various purposes, and does not limit
communication in the application, requiring only that some of it happens via
HTTP. For example, as is the case with sites adhering to the JAMstack archi-
tecture [74], one web server might be responsible for the initial request, serving
the code necessary to start executing on the client, and other servers could be
responsible for, through APIs alone, providing services such as purchasing items
from a shopping cart, leaving comments on an article, or similar.
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2.1.2 Scalability in web applications
The scalability of a system, architecture or application describes how efficiency
of a system changes as more parallelism is introduced [41]. We take a more
abstract and requirements-focused view seeing scalability as the ability for an
application to respond to increased load without meaningful degradation of per-
formance.

Increased load can take the form of increased system interaction over time
(e.g., how many clients connect to a server in a client-server architecture over
time); the form of an increased amount of data being processed by the system; or
any other form that leads to more processing in the system. Degradation of per-
formance, in the definition above, can be defined from a user-centric perspective
as a user’s perceived decrease in responsiveness of a system.

The primary concern in ensuring the scalability of a web application is that
the servers can keep up with the demands of the clients that connect. Client-side
execution happens locally on each client, and only ever deals with the demands
of a single user.

In web applications with simple layered server architectures, the commonly
recommended approach is to make sure the servers do not contain state that
is relevant for responding to requests in the business logic layer, pushing all
state to the data layer. This is called a Shared-Nothing architecture and allows
server applications to be replicated, hidden behind a load balancer, and scale to
large amounts of requests, as long as the underlying data layer can ensure the
required scalability [63].

2.1.3 Understanding data in web applications
There exist several perspectives on data in web applications. Marz & Warren
present a highly scalable architecture, in which they conceive as all information
in a system as ultimately derived from core data [49]. This view is similar to
how event sourcing conceives of data, where events are the most basic data in
a system, and more complex aggregates are derived from these events [25].

Core data’s rawness is determined by how much other information can be
derived from it. All derived state can be seen as computed by a function that
takes all core data of the system as input. Marz & Warren use this perspective
to propose a highly scalable architecture for applications that deal with large
amounts of data, in which core data is persisted, and derived state is continu-
ously rederived [49].

Event sourcing typically uses a more push-based approach, as events are
published in streams, and aggregates are described by projection functions that
perform changes based on the events they encounter. Each new event results in
an update of the state the event affects [69].

Helland (2005) provides a perspective on the difference between data inside
applications, and that outside or between applications. For inside data, trans-
actions in data storage systems provide a way of seeing chronology, as each
transaction is serialized. Outside data, however, is outside of the scope of trans-
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actions, and temporally disconnected. Once it reaches its destination it is no
longer known if it is outdated, so outside data is “always from the past” [40].

Helland characterizes stable data as data that is both immutable and uniquely
identifiable, such that the data cannot change, and the context of the data can-
not change in a way that would make the data interpreted in a different way.
Based on this categorization of data, Helland argues that outside data is stable,
such that a repeated request is unchanged, and a reading of it results in the same
interpretation, whereas data inside applications is mutable and may change over
time [40]. Events in event sourced systems can be seen as immutable data that
describes outside data from the perspective of an application, and derived state
as inside data, connecting the two perspectives on data.

Finally, Helland identifies different representations of data: querying lan-
guages such as SQL do not provide encapsulation, but allow for arbitrary queries;
data inside applications, e.g. represented as objects, provide the opposite: en-
capsulation at the cost of limited queries. data formats such as XML or JSON
would provide neither encapsulation or arbitrary queries, but function as an
independent representation of the data, representing it in a self-describing (and
stable) manner [40].2

2.2 Software architecture
Software architecture is a broad field, having been defined as dealing with recom-
mending practices for software development; the structuring of software systems
into components and their relationships; governance of system design and evo-
lution; and working to ensure that nonfuctional requirements for a system are
met. A concrete architecture can be seen as the meta-structure, how structures
are structured within a system [38].

There are many potential perspectives to consider within software architec-
ture. In this thesis, we will primarily be focusing on the perspectives centered
around architecture evolution and change—that is, perspectives on how archi-
tectures change over time. This section introduces research in these fields, and
several architectural patterns that are relevant to the work found later in the
thesis.

2.2.1 Software architecture evolution and change
An architectural style describes a “recurring organizational patterns and idioms,”
and can be seen as describing a family of concrete architectures. Architectures
may adhere to several (non-interfering) architectural styles at once, given that
the constraints for each architectural style does not conflict with any of the
others [33]. The REST architectural style for well-behaved web applications is
an example. Architectural styles function as a vocabulary for communication

2 Certain of Helland’s observations are tightly coupled to technologies used in SOA. We
have omitted these observations and focused instead on the general observations on data in
applications.
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about architectures, and enables comparisons, of both concrete architectures
and of the architectural styles themselves [33].

There are several approaches to classifying changes in architectures, from
simply distinguishing between improvements and corrections; to more granular
classifications, distinguishing between performance enhancements and functionality-
related enhancements, and introducing a category for preventative changes that
aim to avoid future problems [62, 67, 73].

Williams & Carver (2010) introduced the SACCS framework, integrating
several existing methods of classification, in which changes are classified by a
wide range of properties. “SACCS was designed to capture the effects of changes
to archi- tecture and provide a structured approach for impact analysis,” consid-
ering factors such as a change’s motivation (enhancing a system, or responding
to a defect), the source of the change request, the importance or criticality of a
change, the experience of developers making the change with the system they
are changing, the change’s effect on the architecture, the category of a change,
and more [67].

The change’s effect on an architecture can be either on the features offered by
the system to users, how it affects the components in the architecture, or both.
The category of a change uses the previously established distinction between
corrective, perfective, preventative, and adaptive changes [67].

Chapin, Hale, Khan, Ramil, & Tan (2001) argue that models of architectural
change suffer from several problems, most significantly that similarly named
categories have been used with different meanings in different theoretical frame-
works, and that they have been applied with little consistency in practical works.
The classification of change types is highly dependent on how the classifier un-
derstands the motivations behind a change, and the same change may reasonably
classified as several different types of change. Reliance on the motivation behind
a change makes classification difficult, as motivations are difficult to accurately
assess after the fact. Further, these classifications offer relatively little granular-
ity, and, Chapin et al. argue, are a poor representation of practically occuring
types of changes [13].

Chapin et al. present a new classification model for architecture maintenance—
overlapping somewhat with Williams & Carver’s consideration of changes’ ef-
fect on the architecture, but providing a much more granular classification—in
which classification is based on “objective evidence of maintainers’ activities as-
certainable from observation of activities and artifacts, and/or a before and after
comparison of the software documentation”. This model considers a larger set
of architecture maintenance activities, including support work and changes to
documentation, in addition to actual changes to the architecture. The correct
category for a maintenance task is determined by looking at its impact, and
determining the most impactful category it fits in, thus avoiding considerations
of motivation altogether. Changes to business rules are seen as most impactful
category (D), as a change that affects business rules likely will also result in
changes to the structure of the application, updates to documentation, and new
training tasks. Changes to source code that are not connected to changing busi-
ness rules form the second most impactful category (C); documentation changes
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without architectural changes the group below that (B); and finally supporting
activities without changes to documentation are the least impactful (A). Within
each category, a further level of granularity is offered [13]. Figure 2.1 illustrates
the more granular categories for the two categories that concern architecture
evolution (source code or business rule changes).

Did the activities change the
customer-experienced functionality?

C. Software properties

1. Did the activities change main-
tainability or security?
=⇒ C-1 Groomative

2. Did the activities avoid or re-
duce future maintenance activities?
=⇒ C-2 Preventative

3. Did the activities alter soft-
ware performance characteristics
or properties?
=⇒ C-3 Performance

4. Did the activities change the
technology or resources used?
=⇒ C-4 Adaptive (default)

D. Business rules

1. Did the activities restrict or
reduce the customer-experienced
functionality?
=⇒ D-1 Reductive

2. Did the activities fix the
customer-experienced functional-
ity or make it more correct?
=⇒ D-2 Corrective

3. Did the activities replace,
add to, or extend the customer-
experienced functionality?
=⇒ D-3 Enhancive (default)

No
Yes

Figure 2.1: Decision tree for classifying architectural changes, adapted from the
classification model by Chapin et al. [13].

Architecture evolution paths describe ways in which an architecture may
change into another architecture, and provide an alternative perspective on
architectural evolution. Rather than attempting to classify the changes based
on impact or motivation, the changes are ordered chronologically [7].

Architecture evolution paths are usually used as a predictive tool, in order to
investigate how to get from the current architecture (source) to an envisioned,
future architecture (target). Evolution paths form a directed acyclic graph
connecting source and target architectures, where each node is an intermediate
architecture, and each edge is an operator, a change applied to an architecture,
a step on the path from source to target architecture. A single operator may
contain several architecture transformations, each changing the architecture in
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some way [7].
We have shown that the study of architectural change has received much at-

tention, but research has largely focused on planning, executing and evaluating
such change. Frameworks aim to “assist developers in making decisions about
how to address a change request” [67], or evaluate possible actions to decide
which one is the better [7]. Case studies provide a view into concrete architec-
tural changes, but are limited in their focus on details of particular cases rather
than similarities in change across architectures.

2.2.2 Architectural patterns
As web applications may be arbitrarily complex systems, many architectural
patterns may be in use. This subsection provides a brief introduction to those
relevant for the work in this thesis.

Events in architecture

When some event occurs in one part of a system (e.g. user submits a comment
to an article), it may be published it on a message bus, which other components
in the system may subscribe to, in order to react when certain events occur
(e.g. by notifying the author of the article). In event-based architectures, a
message bus functions as a level of indirection for events, allowing any number
of components to publish or subscribe to any event, in stark contrast to client-
server architecture where each client knows which server they are communicating
with [21].

Event sourcing is the approach of using events to determine an application’s
source of truth. That is, when events occur they are persisted in the system,
and the state of the application is derived from these events. When new events
occur, they too are persisted, and the appropriate changes are made to appli-
cation state. The application state can be recreated at any point in time, by
rederiving it from the events in the system [25]. This allows for some flexibility
over traditional models of persistence that only store the current state of an
application (e.g. allowing for a change in how events should be interpreted,
and reinterpreting the events to create a new state consistent with the new
interpretation).

Event sourcing can be seen as an instance of the Command Query Respon-
sibility Segregation (CQRS) principle, in which the model for writes in an ap-
plication is separate from the one that is read. That is, writes in the system
may take the form of events, while reads may take the form of more complex
domain models. This approach is in contrast to the CRUD model of data, in
which records are created, read, updated and deleted directly. Commands are
the actions that modify state, and queries are actions that read state [26].
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Cloud applications, microservices, and serverless functions

Fox et al. (1997) recommended running larger applications on networks of
smaller commodity PCs, in order to avoid forklift upgrades (in which a large
server is replaced with an even larger server) and lower infrastructure costs
[28]. Cloud computing relies on virtualization on top of large data centers full
of low-cost commodity machines, making this type of infrastructure commonly
accessible, and providing seemingly infinite computational power [6].

The term Infrastructure as a Service describes the on-demand virtually pro-
visioned machines that public clouds make available: the infrastructure no
longer needs to be physically installed, but can be requested from a service.
A Platform as a Service is a higher level of abstraction, where a computational
platform is made available, abstracting away some of the need for understand-
ing the underlying infrastructure. The distinction between the two terms is not
fuzzy, and there may be some overlap in how they are used [6].

Fox et al. (1997) further suggested the decomposition of large applications
into smaller components with “well-circumscribed functional responsibilities”,
and in 1999 Fox & Brewer specified the recommendation, coining the term
orthogonal services, with independent responsibilities and scalability consider-
ations [28, 29]. This laid the ground work SOA, and for what is today known
as microservices. The connection between cloud computing and microservices
is significant, and explains why the two phenomena became popular simultane-
ously: smaller, virtual machines made it an advantage to compose systems of
smaller, independent services, which microservices are an example of.

A modern definition of a microservice architecture is “a single application
as a suite of small services, each running in its own process and communicat-
ing with lightweight mechanisms, often an HTTP resource API”, where each
service represents a single business capability, and includes “user-interface, per-
sistant storage, and any external collaborations” it needs for this [27]. Using
this definition, there are some cases in which architectures are close to being
microservice architectures but have one or more deficits that keep them from
being true microservices.

A distributed monolith occurs when a monolithic architecture is distributed
across microservices, resulting in binary couplings between services. It can be
defined as: a microservice architecture in which services have shared dependen-
cies for common operations, leading to coupling between the services, and in
which interaction with the architecture either requires or is made difficult by
avoiding these shared dependencies.3 Another type of “false” microservice is

3 We know of no definition of distributed monoliths in academic sources. We rely, for our
definition, on a 2016 talk titled Don’t Build a Distributed Monolith, showing that the term
is in use in the industry: “It doesn’t take long until [sic] you have hundreds of libraries that
are required, and the keyword there is required, to run the system. And if you can’t actually
launch a service and have it interact with your microservice architecture unless you have these
hundreds of libraries, and these are the only hundreds of libraries that can work, then we are
really losing a lot of the benefits of the microservice architecture. And this is a distributed
monolith, because we have really just taken a monolithic code base and spread it out across
the network” (emphasis added) [14].
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one in which the feature set is too large to be considered the representation of
a single business capability.

Load balancing provides a way of scaling both microservices and web appli-
cations, provided that they are Shared-Nothing. At the same time, replication
makes the system fault-tolerant and highly available [28]. Another appraoch to
replication would be creating a failsafe, such that a backup service takes over
if the primary service fails. Geographic distribution (such as provided in many
CDNs) brings the source of data closer to the users that need it, making latency,
and thereby perceived response times, lower [56].

Serverless functions build on the principle of smaller business capabilities
from microservices, but are “a new generation of platform-as-a-service offer-
ings where the infrastructure provider takes responsibility for receiving client
requests and responding to them, capacity planning, task scheduling and oper-
ational monitoring,” and where developers provide just the code dealing with
client requests [3]. Serverless functions abstract even virtual machines away,
and can be seen as a type of more managed infrastructure than these.

Strangler applications

To introduce a strangler application is “to gradually create a new system around
the edges of the old, letting it grow slowly over several years until the old system
is strangled”; a gradual, lengthy replacement of one system component with
another [24]. That is, in a strangler application, an old and a new application
live side by side, with the new strangler slowly replacing parts of the old system,
until it has replaced enough that the old system can be discarded entirely, and
the new system takes over all the responsibilities of the old.

Domain-Driven Design

Domain-Driven Design (DDD) is an approach to software development that
starts with considering the problem or business domain in which the software
must work and deliver value [22, pp. 3-4]. Bounded contexts are a DDD term
used to “mark the boundaries and relationships between different models”, that
is a model is useable within a single bounded context [22, pp. 333-334], and
using a model across bounded contexts will involve some translation [22, pp.
337]. Bounded contexts are a virtual abstraction that can be used in software
architectures to determine where interfaces need to exist between components,
and how components should interact.

2.3 Distributed systems and database research
This section introduces relevant research in distributed systems and database
research, focusing especially on the property of consistency within a system, and
the concept of views in databases.
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2.3.1 Consistency in distributed systems
Fox, Gribble, Chawathe, Brewer & Gauthier introduced in 1997 the concept of
orthogonal architectures based on “commodity workstations” in order to elim-
inate “forklift upgrades” in which the only way of upgrading a server was to
replace the entire thing [28]. Their approach, relying on many small machines
in orchestration, rather than large machines, is identical in theory to how cloud
cloud computing is achieved today.

In order to make their suggested system work, they identified “three funda-
mental requirements for scalable network services: incremental scalability and
overflow growth provisioning, 24x7 availability through fault masking, and cost-
effectiveness.” That is, a highly scalable network service should scale linearly
with the amount of hardware in use; be highly available; be cost-effective—or at
least relatively cheaper than systems that would require forklift upgrades—to
deploy; and making deliberate tradeoffs around consistency [28].

This led them to the concept of BASE semantics (basically available, soft
state, eventual consistency) for distributed systems; an alternative to the estab-
lished ACID semantics (atomicity, consistency, isolation durability). As they
note, “it is preferable for an ACID service to be unavailable than to function in
a way that relaxes the ACID constraints,” which they do not find to be an ad-
equate trade-off. BASE is introduced with the goal of being a more practically
usable and less rigid set of semantics [28].

In strongly consistent systems (such as those adhering to ACID), once an
update completes, any clients reading from the system will see the updated
value, and not a stale one. Many systems have weaker forms of consistency,
such as the eventual consistency in BASE, which can be seen as divergence
from strong consistency [66].

Fox & Brewer (both also authors of the above paper) introduced the CAP
theorem two years later, in a paper titles Harvest, yield and scalable tolerant
systems. In the paper, they use harvest as a metaphor for the correctness of read
requests to a system, and yield as a metaphor for the success of write requests.
A highly consistent system which does “not tolerate harvest degredation because
any deviation from the single well-defined correct behavior renders the result
useless,” would rather deny writes (low yield) than have incorrect reads, and thus
prioritizes harvest [29]. In a distributed system, harvest concerns confirming
writes, and yield concerns showing the correct state on all nodes.

The CAP theorem states that out of the three properties, consistency, high
availability, and partition resilience, only two will ever be perfectly attainable
in a single system. That is, it is impossible to have a system with strong
consistency, high availability, and partition resilience [29].

A slightly more detailed model of consistency in distributed systems indicates
that a distributed system can guarantee strong consistency if W + R > N ,
where W is the number of nodes a change must be written to to be considered
successful, before it is accepted; R is the number of nodes a value must be read
from in order to be considered a successful read (accepting the latest changed
value as the correct one); and N is the number of total nodes in the distributed
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system [66].
If W + R > N , then the written-to set of nodes and read-from set of nodes

must necessarily overlap, which would guarantee an always consistent system,
where writes are always propagated to all readers (assuming that readers can
distinguish newer values from older ones). Such a system, with W + R > N
and a large N , can provide high availability and fault tolerance (through being
distributed), as well as strong consistency, but is not partition-tolerant: if a
partition happens, only the larger partition (with enough nodes to allow both
valid reads and writes) will continue to be operational [66]. A partition-tolerant
system must necessarily have W + R < N , for partitions to continue being
operational given a partition.

Abadi (2012) adds latency as a property that is commonly (and should be)
considered in tradeoffs with the other properties. He attempts to counter a
common misunderstanding of the CAP as a very rigid tradeoff. “In reality,
CAP only posits limitations in the face of certain types of failures, and does
not constrain any system capabilities during normal operation.” As network
partitions are rare, he proposes a tradeoff framework that takes into account
the common tradeoff between consistency and latency [1].

When replicating data, “there are only three alternatives for implementing
data replication: the system sends data updates to all replicas at the same
time, to an agreed-upon master node first, or to a single (arbitrary) node first.”
The first option can be considered as providing low latency but low consistency,
whereas the others provide higher consistency within the system, but at the cost
of higher latency for update propagation [1].

Abadi proposes a new theorem, PACELC, in which system designers must
make the following tradeoff: given a partition, tradeoff between availability and
consistency; else tradeoff between latency and consistency. That is, in the rare
case of a partition, a decision between availability and consistency must be made
(as noted in the CAP theorem); but even in the case of no partition, a valid
tradeoff between latency and consistency may likewise be made. In other words,
Abadi notes that latency should be considered an important parameter when
making tradeoffs in distributed database systems [1].

While strong consistency may seem a desireable property, Fox & Brewer
note that “[n]early all systems are probabilistic whether they realize it or not.
In particular, any system that is 100% available under single faults is prob-
abilistically available overall (since there is a non-zero probability of multiple
failures),” and propose two possible strategies for coping with this reality: either
trading off harvest for yield, ensuring high availability at the cost of consistency;
or decomposing the system into smaller subsystems with independent storage,
so the tradeoff decisions can be made differently for each component, taking
into account the specific requirements for that subsystem [29].

Eventual consistency was in the CAP paper defined implicitly as simply
the absence of strong consistency [29]. Others have more explicitly used this
definition, e.g. Obasi & Asagba referring to systems that are highly available
and partition-tolerant as necessarily at-most eventually consistent, and stating
that eventual consistency is “a model for database consistency in which updates

22



to the database will propagate through the system so that all data copies will
be consistent eventually” [51].

Both of these definitions are rather informal. To arrive at a more formal
definition, we must decide on a perspective. As Vogels states, “[t]here are two
ways of looking at consistency. One is from the developer/client point of view:
how they observe data updates. The second way is from the server side: how
updates flow through the system and what guarantees systems can give with
respect to updates” [66], a perspective which has found some support [37].

Vogels defines the lack of strong consistency as weak consistency, a type of
consistency in which write in a “system does not guarantee that subsequent
accesses will return the updated value” and some conditions “need to be met
before the value will be returned” [66]. The most recent value written to a
system is called the fresh value, and once a value has been overwritten, it is
considered stale. As such, systems that do not return the updated value, will
instead return a stale value [37].

Eventual consistency, then, is described as a type of weak consistency, un-
der which certain additional conditions apply. Specifically, “the storage system
guarantees that if no new updates are made to the object, eventually all ac-
cesses will return the last updated value”, and in which the time between an
update and the returning of the correct value being returned can be determined
based on “factors such as communication delays, the load on the system, and the
number of replicas involved in the replication scheme”, provided that no failures
occur [66].

This, it should be noted, takes the user-perceived perspective on eventual
consistency, defining it based on how the user experiences the consistency of a
system. A system-oriented definition would define eventual consistency in terms
of how long it takes for changes to propagate through the system, not how long
it takes for a user to receive the correct value. Golab et al. provide such a
definition, stating that eventually consistent systems are those where “[o]nce a
write is acknowledged, the new value is propagated to the remaining replicas;
thus, all replicas are eventually updated unless a failure occurs” [37].

We have now established weak consistency as a base level for consistency
deviating from the property of strong consistency, and eventual consistency
as a stronger definition than weak consistency. Within eventual consistency,
there are several different types of consistency, each adding more consistency
requirements to a system, that can be discussed. Vogels provides an overview of
these stronger types of eventual consistency, of which several may be combined
in a single system, so long as they are not contradictory [66]:

• Causal consistency, in which “events happen in order” [48], such that a
single client will perceive events as happening in an ordered manner. If
a client completes a write to a server, then a subsequent request for the
same element will result in that same written value, and not a stale value.
That is, from the perspective of a single client, chronological ordering of
events appears preserved.4

4Lloyd et al. seem to view eventual consistency as a separate form of consistency, but their
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• Read-your-writes consistency, in which a client will never see an older
value than their latest write to the system. (This is a special, and more
limited, case of causal consistency.) If client commonly communicate with
the same server, this type of consistency is easy to provide; less so in
systems where clients do not stick to the same server. It is possible to
implement this on the client-side of the system, where the client ensures
that if the system returns an older value than its latest write, it will simply
use the value it wrote.

• Session consistency, in which a client accesses the system in a session,
during which read-your-writes consistency applies. After the session ter-
minates, the guarantee disappears.

• Monotonic read consistency, in which the system will never return an older
value if a newer one has been seen. Like read-your-writes consistency, this
can be implemented in the client.

• Monotonic write consistency, in which case the system guarantees that
writes by the same client are applied in-order. Vogels notes that “[s]ystems
that do not guarantee this level of consistency are notoriously hard to
program” [66].

The inconsistency window is the time between a write of a value, and the
time where the value has correctly propagated such that it is read correctly
throughout the system [66]. Golab et al. refer to this same time, the time in
which a stale value may be returned, as the staleness of a value [37]. In order
to measure the size of said inconsistency window or staleness, one could employ
the measure of ∆-atomicity, which measures the amount of time (in some time
unit) a system is at most behind the most recent value written [37].

More precisely, ∆-atomicity and k-atomicity (where k is the number of ver-
sions behind the fresh value a system will at most be), are defined in terms of
the golden standard of linearizability. In a fully linearizable system, “the storage
system behaves as though it executes operations one at a time, in some serial
order, despite actually executing some operations in parallel,” and no reads of
stale values can occur. Eventually consistent systems can then be described by
their deviation from linearizability, and ∆- and k-atomicity are measures of this
deviation [37].

Finally, staleness may also be measured as< k, t >-staleness, which describes
the probability that a read t time-units after the latest write returns a value
within some k-atomicity bound. This measure combines the two other measures,
and provides it result in a probability, rather than a yes/no answer to whether
or not a requirement is met, and may thus be seen as more flexible [37].

other observations do not otherwise contradict that causal consistency is simply eventual
consistency with additional consistency requirements [48].
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2.3.2 Materialized views
In a database, a view is a query over the data in the database, providing some
new perspective on what is essentially the same data. A materialized view is
a view for which the tuples resulting of such a query is saved in the database,
and does not need to be constructed once the view is requested. A materialized
view need not be fully materialized, but can be materialized on demand, and
function like a cache for results from previous queries of the view [39, 45].

Much like with values in a distributed database, materialized views are con-
sidered stale if they are out-of-date, meaning that they have not yet incorporated
all relevant changes from the base relations, the relations on which the view re-
lies [45]. Materialized views add a layer on top of the freshness and staleness
considerations we have previously discussed, as they aggregate those values. We
now no longer have to just consider freshness of a single field we read and write,
but also the freshness of aggregates that field may be a part of.

Instead of recomputing an entire materialized view when a field is updated
(or when a query is made, if the materialized view is only computed on request),
incremental view maintenance can be employed. Incremental view maintenance
figures out how base relations affect the view, and which parts of the view
need updating based on which base relations have changed. This allows the
database to “compute only the changes in the view to update its materialization”.
For example, it might quickly be determined that an update to the dataset
is an irrelevant update, and does not affect the view, leaving no reason for
computation [39].

One approach to incremental view maintenance would be one considering the
semantics of the queries that the views represent. If several overlapping queries
are performed, but part of the query can be answered by a previously answered
query where no results have changed, this will be faster than recomputing all
these values. This requires figuring out overlap of queries, and which queries
can be used as the basis for computation of which other ones, by looking at the
semantics of the queries. This is called semantic caching [43].

Recomputing the materialized view as soon as a base relation changes is
called eager maintenance, and is not always feasible in large databases with high
load, or with many views, where blocking writes in order to ensure consistency
until the changes has fully propagated would leave the database unresponsive.
Two approaches are possible: accepting that the view may return stale data
until the changes have time to propagate, or ensuring an updated view once the
view is actually requested. Both of these would be termed lazy maintenance
[45].

In the world of databases, there have been experiments with caching on
database clients as well, in order to provide better performance. “Performance
is improved, for example, by reducing interaction with servers and by avoiding
the costs of obtaining data from remote sites.” Additionally, locally caching data
that can be used to answer certain queries will lessen the load on the remote
database. If the database server keeps track of which clients have what data,
it can notify the clients when data has become invalid, making clients fetch the
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data again when they need it. This model is more efficient than pushing updated
data, as the server does not know whether or not the data will be relevant to
the client again [31].

2.4 Narrative analysis in software engineering
Barnes, Garlan & Schmerl present the concept of architecture evolution paths
along with a formal constraint language for mapping such paths. In the con-
straint language, each step on a path is represented by an operator, which
is a collection of transformations (structural changes to the architecture) and
preconditions (the conditions that must be present before the operator can be
applied to an architecture), as well as some other information to support anal-
ysis, marked analysis [7]. In the constraint language, each transformation is a
”basic structural change to an architectural model [...] things like adding a com-
ponent, deleting a port, renaming a connector, and modifying a property“, but
evolution operators are collections of these that are architecturally significant
[7].

In the cleaning of our data (c.f. section 3.3), we found architectural steps
that were generic and architecturally significant, at an abstraction level similar
to operators in Barnes, Garlan & Schmerl’s terminology, albeit less formally
defined. Our architectural steps do not list all underlying transformations, and
we have not formally categorized preconditions; but they are similar in spirit to
operators, and similarly support the first-class analysis of architecture evolution
paths.

In order to move slightly closer to the (very) generic operator definitions
used by Barnes, Garlan & Schmerl (such as ”Wrap a legacy component as a web
service“ [7]), we find similarities between steps, so e.g. steps that introduce at
least one microservice are placed in a category of similar steps; as are steps that
introduce a secondary web service with new functionality, to run alongside an
existing web service.

The main analysis activity in this study concerns finding common paths of
evolution among the architectures we investigated. For this, we take an approach
inspired by narrative analysis from the field of sociology.

Narrative analysis “refers to a family of approaches to diverse kinds of texts,
which have in common a storied form”, and is a turn away from analysis looking
for adherance to “master theories” [58]. Narrative analysis deals with various
data collection and organization in order to produce something for further anal-
ysis; narratives are not raw data in and off themselves, but must be analyzed in
order to be useful [58]. The texts under analysis are analyzed for “a perceived
sequence of nonrandomly connected events” [64, p. 6]; a single narrative is a
series of sequential and logically connected elements [32].

Narrative analysis has been defined as a method of “recapitulating past ex-
perience by matching a verbal sequence of clauses to the sequence of events
which (it is inferred) actually occurred” [46]. The underlying actual sequence
of events is sometimes referred to as the story, underlying the narrative, which
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is the story as told. A story told is backed up by a series of actually occurring
events, but the narrative is not limited to just the events occurring in the story.

There are various different definitions of the term narrative, which leads to
different types of analysis [58]. For our purposes we will be relying on thematic
analysis, in which emphasis is placed on what occurs, rather than how the
narrative is told [58]. That is, we have a strong emphasis on reconstruction of
the underlying story.

Reconstructing the underlying stories of narratives enables further analysis.
Many cases in similar fields follow similar narratives, one example being devel-
opmental narratives, the stories of how things came to be [2, p. 68]. Analyzing
several told narratives for commonalities can lead to the development of a stage
theory, a theory of how one stage commonly follows another in “a common se-
quence of unique events”. In these theories, some deviations are allowed, but
they describe a pattern common enough that it is worth noting [2, pp.73-74].
Common narratives do not describe situations where an event X necessarily
predicts another event Y, but rather situations where an event Y is commonly
preceded by an event X. They deal with how an event Y commonly comes about,
rather than questioning why it had to occur.

Narrative analysis has previously been used in the field of software engi-
neering, although mostly in the “softer” parts of the field. From the 1990s
and onwards, the natural science methods commonly used to tackle all prob-
lems faced by software engineering have been increasingly challenged, and more
cross-disciplinary approaches have been taken. It is in this context that narra-
tive analysis has been introduced to software engineering [4].

Narrative analysis has been used to interpret various facets of different types
of failures of information systems, including users’ experience of system failures
[19], stakeholders’ narratives of how failures came about [18], conflicting narra-
tives on a system’s success from different groups of stakeholders [8], and failures
in outsourcing of information systems [17]. It has been used to further under-
standing of organizational practices [20], to explore maintainability in systems
integration [53], and to better understand requirements elicitation for system
design [5].

Common for all of these applications is that they directly translate the meth-
ods of narrative analysis to a new context. The analysis itself remains un-
changed, but now interacts with established methods from the fields of require-
ments engineering, software architecture, and others. Many of the approaches
focus on the primary analysis of narrative analysis, understanding nuance of
the narratives (“reading between the lines” [19]), and establishing an underly-
ing story from disparate narratives. We know of no studies that attempt to
establish common narratives.

The concept of narratives as a storytelling of sequences and the identification
of common processes in chronologically structured data has not been applied to
more formal data in software development. In fact, some researchers argue that
“there has been great success in applying [...] natural science methods to the
study of information systems development”, apart from in the “softer” parts [4],
providing reason for abstaining from applying narrative analysis to less “soft”
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parts of software engineering research.
An alternative view would be that thinking in narratives, and especially

common narratives, can be useful in places dealing with much more formal and
structured data; that narrative analysis has a place when dealing with other
texts than transcribed speech.
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Chapter 3

Study design

Summary This chapter introduces the study design for a study of 6 com-
panies located in Denmark, where an employee from each company was inter-
viewed regarding the architecture and architecture evolution of the company’s
web based product. The section covers participant selection, interview proce-
dure, and transcription and coding process. Finally, the section covers validity
and reliability of the study for the parts relating to the study design itself. The
results, related analysis and discussion of the study, and validity considerations
for the analysis can be found in chapters 4, 5, and 6.

3.1 Participant selection
The first step in the process of participant selection was identifying eligible
companies. Some companies (3) from the authors’ networks were contacted. A
large number of companies (17) were contacted based on authors’ knowledge of
their existence, and an inkling that their software architecture might be eligible
for the study. Most of the companies contacted (20) were identified through
the following process. The Hub1 provides a list of "startups" in Denmark,
categorized according to various criteria. We started from the beginning of the
list, contacting companies that: (i) were categorized by The Hub as being in
the final phase of a startup, Growth and Expansion; (ii) were not co-working
spaces, venture capital firms, or agencies; (iii) had at least 4 employees; (iv) were
not reveal to be a webshop hosted as software as a service (SaaS) by a quick
inspection of the company website; (v) had an online presence indicating that
the primary product of the company was web-based. These criteria were meant
to isolate companies that had likely had to deal with scaling their web-based
product, and had a software development team employed.

1https://thehub.dk/ (retrieved 2018-08-11)
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All the companies we contacted were sent a standard email inviting them
to participate in the study, explaining the context of the study, the type of
participant we were looking for (that is, a company that started their product
as a layered web application), and the expectations for them as a participant
(see appendix A). Companies were contacted in Danish if their website and
communication was primarily in Danish, and English otherwise.

Out of the companies contacted, 7 responded in the affirmative, and one neg-
ative. One contacted company responded with interest, but did not respond to
follow-up emails. One of the positive responses arrived only after interviews had
concluded, and as such the company was not included in the study. The overall
response rate was 22.5%, with a 100% positive response rate from companies
in the authors’ networks; a 0.0% positive response rate from companies con-
tacted based on authors’ knowledge; and a 15.0% positive response rate from
companies contacted via The Hub’s list. Six companies were selected for the
study, with one interviewee from each company, selected based on the compa-
nies’ judgment of who might best answer questions regarding the company’s
software architecture.

In order to get an idea of the companies selected, they were looked up in the
Danish government’s Central Company Registry (CVR),2 extracting informa-
tion about the industry categorization of the company and the number of em-
ployees reported per the fourth quarter of 2017.3 The companies had between
2-4 and 50-99 employees per the fourth quarter of 2017, and were primarily
placed in the Computer programming (3) industry code, with some participants
in Other publishing of software (1), Consulting regarding information technology
(1), and Other assistance services regarding financial intermediation (1).

During the interviews, interviewees were asked about their role in the com-
pany, and the company itself. Most of the interviewees had the role of CTO (4),
but we also interviewed one Director of Product (1), and one Backend developer
(1). The interviewees had been with the company between 4 months and 10
years (mean 5.2 years, median 5 years). In relative figures, they had been with
the company between 7% and 100% (mean 75%, median 85%) of the company’s
existence. The companies were founded between 2004 and 2013 (mean 2011,
median 2013), launching their products between 2004 and 2015 (mean 2012,
median 2013). The reported size of company development departments was
between 5 and 70 people (mean 20, median 11); and the reported number of
users was between 1500 and 500000 (mean 166500, median 48000). Five com-
panies were located in the Greater Copenhagen Area in Denmark, and one was
in another location in Denmark.

2https://datacvr.virk.dk/data/ (retrieved 2018-08-11)
3Interviews were conducted in the second quarter of 2018, but unfortunately the most

recent employee count available was for the fourth quarter of 2017.
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3.2 Interview procedure
Before the interviews were conducted, an interview protocol was created. The
interviews were semi-structured interviews, with a list of subjects to cover, but
with the interviewee taking the lead on interpretation of the subjects and the
interviewer asking clarifying questions. Interviewees were also encouraged to
illustrate as they were explaining. The interviews were recorded on two devices
simultaneously, to provide redundancy, and the interviewees’ drawings were
captured by a camera.

At the beginning of the interview, the stage was set, and the participants
gave active consent to having their voice and drawings recorded, and to the use
of the results in the research project, provided the presentation of the data was
anonymized. The topics covered during the interview were, in prioritized order
(leaving the potential to skip later topics, in case an interview ran out of time):

• The product’s profile (when development started, date of first launch, the
team then, the team now, number of users, interaction pattern of users)

• The interviewee’s profile (their role in the company, their role while work-
ing on the product, their interaction with software architecture as a tool,
how software architecture is used in the company)

• The product today (the significant components of architecture)

• The initial architecture of the product (the considerations when starting
to develop the product, the significant components)

• Changes along the way (gradual changes, major changes, the causes of
said changes, the effects of the changes to the architecture, and potential
evaluations of the changes)

• The interviewee’s approach to scaling applications today (how would they
go about responding to changing scalability requirements in their product
as it first looked, if they were to do it today)

The interviews were estimated to take around an hour, and took between 36
and 99 minutes (mean 65, median 62). The full interview protocol can be found
in appendix B.

After the interviews were completed, they were transcribed. The transcrip-
tion was loose, emphasizing meaning over form, leaving out sounds such as
stammering, coughing and sighing, but precisely transcribing sentence struc-
ture, to avoid interpretation during transcription. Only a single source of sound
was used for transcription as none of them had failed during the interviews.

3.3 Coding
Coding is the first step in moving from the raw data of transcripts to more an-
alyzable data. We first developed a preliminary coding table while transcribing
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the interviews, noting interesting topics that were mentioned by the intervie-
wees. When we started coding of the transcripts, we continued adapting the
coding table, adding new items of interest.

There were at least 41 days between an interview being transcribed and the
coding of the interview, leaving time for the researcher to distance themself from
the experience of the interview, hopefully allowing for a more objective coding.

At the same time as the coding process we employed narrative analysis to
reconstruct the stories behind the narratives told to us by the interviewees. In
particular, we focused on reconstructing the order of the events that occurred
when the interviewees talked about the items in our coding table. This process
led to a construction of a timeline of events, each event representing a step
in the architecture evolution of that company, which we noted in a separate
document. We also constructed a company profile from the interview, noting
significant years, as well as user and employee numbers.

This process resulted in a coding summary for each company, listing in-
formation about the company and the interviewee, a timeline of events in the
company, a timeline of concrete architectural changes over time, and notes on
architecture use in the organization. Certain architectural changes were coded,
but could not be placed in time, but were mentioned in the interviews, and were
thus listed after the timeline of architectural changes.

Figure 3.1 shows an example of an interview summary, with a company
profile on the left and a timeline of the software architecture, with relevant
codings, on the right. Identifiable information has been blacked out.

3.4 Validity and reliability
When considering the validity and reliability of the study, we rely on Krippen-
dorff’s categorization of types of validity and reliability [44].

3.4.1 Reliability
First, we consider reliability, in which we will look at the notion of stability
(whether repeated applications of the same method would lead to the same
result), and the slightly stronger notion of reproducibility (whether other re-
searchers, applying the same method, would find the same results).

The most significant flaw in the reliability of the study is that the inter-
viewing, transcription, coding and analysis involved was performed by a single
researcher. This is likely to lessen reproducibility, or at very least indicates no
positive reproducibility in the study. A common technique to avoid this problem
is having several researchers perform the same research step based on the same
(part of the) data, and comparing he results. If too much of a variation is found
between researchers, reproducibility is considered poor. We have performed no
such check.

Additionally, much of the approach presented in the study is novel and ex-
perimental, which may lower the stability of the method applied, as parts of the
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Figure 3.1: Example of an interviewee summary.

method was refined during the coding and analysis of the results found during
the interviews.

With these two major objections in mind, the steps of the project can indi-
vidually be defended as relatively stable for the following reasons:

Participant selection Half of the participants for the study were selected us-
ing a formalized method. The other half relied on existing contacts, but
received the same information as the formally selected participants. No
interviewees were direct acquaintances to the researchers.

Interviews The interviews followed a pre-defined protocol, and allowed re-
searchers only to ensure that all topics were covered, as well as asking
exploratory questions, when interviewees responded.
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Transcription and coding Multiple recordings existed for each interview, and
transcription was verbatim (but not phonetic). Coding was performed
using a legend of terms to code for. The architecture evolution paths
constructed during coding were only included when directly supported by
codings. (As a counter-point, the coding legend was refined as the inter-
views were transcribed, and different researchers may have found different
points of interest in the transcripts.) At least 41 days were left between
the transcription and coding of any individual interview. This is a com-
mon practice in order to have the transcript appear more as new to the
researcher, lessening the impact of impressions the researcher may have
had during the interview, and leading the researcher to rely more truly on
the transcript itself.

The weakest links in the reliability of the study can be summarized as the
lack of an established legend to code for, and a lack of a subjective means for
generalizing architecture evolution steps. Both of these problems could have
been lessened by having another researcher perform reproducibility checks on
the data.

3.4.2 Validity
Validity concerns the design of the study and the use of the methods, and
whether or not the methods do indeed perform the action they purport to per-
form. In this section we will only focus on validity concerns arising directly
from the study design. Most of the validity concerns of the study relate to the
application of method, and these are covered in the following chapters, where
analysis and results are presented.

The only major validity concern based on the study design is the generaliz-
ability of the results. The sample size of the study (6) is very limited, and un-
likely to provide any generalizable results. Further, the participants all resided
in Denmark, which makes it likely that national trends have been captured and
presented as general. Finally, the study focusing on a limited set of architectures
(those evolved from layered web applications) means that the study does not
properly represent the breadth of architectures found in the industry.

The generalizability of the study is therefore severely limited, and the results
can generally be considered to show that certain things exist and occur in the
industry; but not that there are no more common occurrences than them. It
should be noted, however, that the study’s goal was never generalizability, but
exploration.
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Chapter 4

Breadth of web application
architectures

Summary This chapter presents a set of results from the study described
in chapter 3, and the ensuing discussion attempting to answer research ques-
tions RQ3 and RQ4, regarding architectural patterns of web applications and
architecture-centric practices in the interviewed companies. This includes find-
ings of several known patterns, and a few previously undocumented patterns
of web application organization; as well as finding that most of the interviewed
companies had long-lived hybrid architectures, somewhere between architectural
patterns that are usually considered to be irreconcilable. All in all, this illus-
trates the existence of a wide variety of web application architectures. Finally,
the chapter presents reliability and validity concerns related to the analysis
performed in order to answer these questions.

4.1 Concerns of this chapter
Given the study presented in chapter 3, we can attempt to answer some of the
posited research questions. This chapter will present the results and analysis of
the data relevant to research questions RQ3 and RQ4, as well as the ensuing
discussion.

RQ3 What forms do web application architectures take, and what variation
exists in this regard?

RQ4 Which architecture-centric practices are used in the development of web
applications?

The coding table relevant for this chapter can be found in appendix C.1.
The coding concerned itself with noting architectural practices observed (cate-

35



gorized under the headings Architecture as a tool in the organization and Goals
and direction for architecture); architectural patterns; reasons given for archi-
tectural change; and the manner of change (categorized by the type of operation
performed on the architecture, such as adding a new component, or removing
an existing one).

An example of coding of a section of interview (conducted in Danish) is
shown in figure 4.1. The excerpt shows the mention of infrastructure hosting on
Azure being coded as AP.5 (Infrastructure or platform as a service); the mention
of several web applications accessible by a client coded as AP.6 (Parallel layered
web applications); and the mention of all services in the architecture being
stateless coded as AP.3 (Shared-Nothing architecture).

Figure 4.1: Example of coding of a section of an interview

4.2 Relevant results
In this section, we present results from the study relevant to answering the
research questions posed at the start of the chapter.

Out of the six companies we interviewed, none used formal architecture tools
as part of their development process, and none were guided by concrete target
architectures. We found that all (6) of the participants had an informal approach
to software architecture, with half (3) never using architecture diagrams to
discuss architecture or architectural direction, one participant using diagrams
solely for external communication, and the remainder (2) participants regularly
using diagrams (albeit informally) as part of their architectural design process.
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Most of the participants (4) lead their architectural development by archi-
tectural principles, one participant had no way of setting architectural direction,
and one participant made no indication during the interviews as to how they
dealt with architectural direction and goals.

We counted occurrences of architectural patterns in two ways: the number
of cases in which an architectural pattern occurred in at any point in time; and
the number of current architectures (at the time of interview) an architectural
pattern occurred in. The overall occurrence count can be seen in table 4.1.

Architectural pattern
Cases it

occurred in

Current
architectures
it is present in

Web server application 6 6
• Shared-Nothing, as part of a larger system 5 5
• Shared-Nothing, as only part of the system 3 1
• Stateful, as part of a larger system 1 0
• Stateful, as only part of the system 1 0
Chained web servers 2 2
Parallel web servers 4 4
Replication of components 3 3
• Load balancing 3 3
• Geographic distribution 2 1
• Failsafe 2 0
Bounded contexts 3 3
Strangler pattern 4 2
Microservices 5 5
• True microservices 5 5
• False microservices: large feature set 1 0
• False microservices: not individual storage 2 2
• Machine learning as microservice 3 3
Services in multiple programming languages 3 3
Serverless functions 2 2
Infrastructure or platform as a service 5 5
Shared dependencies across services 3 3
Shared database across services 3 3
Communication via message bus 4 3
CQRS 2 1
Static site/JAMstack 1 1

Table 4.1: Occurrences of architectural patterns

All of the participants (6) started their products with a least one web server
application in their architecture, and most (4) had a single web application
server with no replication as their entire architecture at the launch of their
product. One participant started their architecture in a similar way, but with
replication, and the last participant’s product’s first version had a more complex
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architecture.
Throughout the existence of their applications, some participants (2) had

stateful (i.e. not Shared-Nothing) web applications, but in current architectures,
all of the web applications are Shared-Nothing and therefore scalable by industry
recommendations. Half of the cases (3) had done so, by replicating their web
applications behind a load balancer. Only a single current architecture remained
a single layered web application—all the other architectures evolved beyond this
simple pattern, choosing other ways of growth than simply replicating a single
Shared-Nothing web application.

In terms of replication, the most common form was load balancing (3), but we
also found geographical distribution (2) and replication as failsafes (2), providing
backup in case the main system went down. All of the failsafe systems were,
however, removed again before the current versions of the architectures; and
one of the geographical distributions logged was only planned for the future,
and not actually completed yet, however load balancing serve much the same
function with the added benefit of lowering load on individual components, and
some gave up failsafe replication for this pattern.

We identified two interesting patterns of composition for web servers:

• Parallel web servers, in which two parallel web servers use the same
data layer, and provide entry points for different users, or differing func-
tionality (see figure 4.2).

• Chained web servers, in which one web server uses another as its data
layer, providing a further level of abstraction on top (see figure 4.3).

Client

Web server

Web server

Data store

request

request

query

query

Figure 4.2: The parallel web servers architectural pattern

Web applications have long been seen as multi-tier applications [61], and
chained web servers may be seen as simply an instance of this pattern. Alterna-
tively, the patterns can be seen as special cases of Service-Oriented Architecture
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Client Web server Web server Data store
request request query

Figure 4.3: The chained web servers architectural pattern

(SOA) [57], where web services use standardized protocols to communicate be-
tween each other.

The patterns differ from SOA in various aspects, but most significantly that
there is no standard way of connecting and communicating between components
employed in the architecture; rather, in applications with chained or parallel web
applications we do not find a general tendency of web services intercommuni-
cating. The communication is strongly directed (each layer a lower level than
the previous one), and have more in common with web services as a general
concept than with SOA.

While this type of communication, between web servers, is common, what we
observed was a common and novel manner of organization, that is not precisely
captured by the labels of multi-tier applications or SOA. Parallel and chained
web applications are terms that more precisely communicate the manner in
which the components communicate with one another.

We have seen similar patterns in microservices, with communication via
HTTP, so it is important to note that neither of these web servers are microser-
vices, either as claimed by interviewees or according to our working definition
of microservices.

We found parallel web servers to be a common pattern (4 participants), and
chained web servers common enough to be of note (2 participants). Parallel web
servers were often started as a way to provide a new feature set with a different
type of interface, such as introducing a separate web application to serve as an
API service for third-parties to integrate with the product. Chained web servers
often took the form of a more specialized outer web application that customers
would interact with, and a web application with a broader feature set hidden
from the customers. We also saw a combination of the two, where two parallel
web servers both used another web server as their data layer.

We found that half of the participants (3) at some point introduced the
concept of bounded contexts from domain-driven design, and that this was a
significant guiding principle in their architectural design.

Most of the cases (4) at one point introduced a strangler application. In-
terestingly, while a strangler is ongoing, the architecture is in a sort of hybrid
state, with both an old and a new component existing at the same time. We
found two cases in which the strangler was completed (and so only two current
architectures have an ongoing strangler in them). One took less than 2 years
to complete, the other 4 years. The two still ongoing stranglers had lived for 1
and 4 years, respectively, at the time of the interviews.
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At the time of interviews, most of the applications were fairly complex, con-
sisting of many different components, including microservices (5), message-based
communication (3) or an intention of getting it (4), or different services written
in different programming languages (3). Some (2) had introduced serverless
functions, a highly managed type of infrastructure, that has been known to
significantly lower cost of execution [3]. Using platforms that provide infras-
tructure as a service is a very common (5) approach among the interviewees,
with only a single participant using a more traditional hosting partner, their
application tied to a single physical machine.

In trying to determine what was meant by different interviewees when they
mentioned microservices, we inquired as to how exactly these services interacted
with storage and other components of their architecture. In one case we found
(micro)services with a feature set spanning across several business capabilities,
and two cases had (micro)services that shared storage between several services.
In current architectures, however, the feature sets of the false microservices
were made to conform to business capabilities: the existence of a larger, less-
conforming microservice was a step on the way to learning the proper way of
using microservices in their architecture. One of the remaining cases of mi-
croservices with shared storage was justified by the interviewee by noting that
the shared storage was inside of a bounded context, showing a different defi-
nition of a conforming microservice (i.e. a single business capability, and not
shared storage across bounded contexts).

None of the interviewed companies had full microservice architectures, ar-
chitectures made up entirely of small services. All companies with microservices
in their architecture (5) used them in coordination with more traditional (and
larger feature-set) layered web applications, in a sort of hybrid architecture.
An interesting pattern that emerged is that half of the cases (3) experimented
with machine learning by adding it as a microservice, separate from the main
capabilities of their product, illustrating that microservices were used as a way
of experimenting without impacting the existing capabilities. There was no im-
mediate pattern to when companies started introducing microservices in their
architectures, the first introduction spanning from 2012 to 2018, with a mean
introduction time in 2017.

Expanding the definition of a distributed monolith to simply include shared
dependencies across different services (not just within the microservices of the
architectures), we found that half (3) of the architectures under study were
guilty of this proclaimed anti-pattern. Another indicator of high coupling in the
architectures was the shared database access across different services, of which
half (3) of the architectures were also guilty. Several interviewees indicated a
desire to improve this situation, but that it was accepted as a current state of
affairs, as other improvements and additions to the application were prioritized
higher. This indicates that what can be presented as an anti-pattern in the
industry may be a common pattern in concrete architectures, as it works well
enough for the current needs of the architecture.

One interviewee reported implementing some form of Command-Query Re-
sponsibility Segregation; another interviewee indicated a desire to implement
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something like this in the future. Finally, one interviewee reported having a
static website enabled by Javascript and API calls executed in the client, an
approach resembling the JAMstack pattern.

4.3 Discussion
During the study we found no of formal use of architecture-centric practices
and tools, with a majority of the interviewees steering by way of principles
rather than target architectures, and only a few interviewees using any kind of
architectural diagrams in their design process.

This lack of formal architectural use supports prior research. For example,
Paixao et al., studying developer awareness of architectural impact in an open
source project in 2017, found that developers discussed the architectural impact
of their changes 38% of time, “suggesting a lack of awareness”; and that architec-
ture is a focus point when it is being improved, rather than when architectural
degredations are introduced [55]. Likewise, Ozkaya, Wallin & Axelsson in 2010
found empirical support that “systematical use of architecture-centric practices
do not serve as a first class resource” during system evolution in the large scale
projects they studied [54].

While the use of architecture-centric tools in the cases we studied was not
systematical, architectural thinking was present, but managed in a pragmatic
way, often using common principles and practices across a team to slowly work
towards a (vaguely defined) target. From these results we can expect that
participants have an understanding of their architectures, and at least some of
them are experienced in illustrating it using diagrams. This gives us some sense
of security in the accuracy of the illustrations the interviewees provided.

We found several unorthodox architectures in the cases we studied, including
patterns such as parallel and chained web applications, and architectures in a
hybrid state between layered web applications and microservices. Infrastructure
as a service could be seen as both a necessity and an enabler of the complexity
we identified. We found it a fairly common occurrence to have long-lived slow
changes as a part of the architecture, and significant complexity in most of the
architectures studied.

Long-lived hybrid architectures (in which several architectural patterns that
are usually considered in opposition—such as monlithic web applications and
microservices—are in use at the same time) were common. This may be taken
as an indication that prescriptive architectural tools that focus on efficiently
moving from one architecture to another (such as is the declared purpose of
architecture evolution paths [7]) may be aiming to perform something that is
incompatible with what software developers would naturally do. That is, there
may not be value in a complete migration from one architecture to another, if
the benefits of two opposing architectures can be achieved at the same time,
and some architectural tools may make the choice of a hybrid less obvious, and
hence lead architects in a direction that may not be optimal.

As all the interviewed companies has a web-based product as their primary
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offering, this all goes to show a breadth and variety of concrete web application
architectures in use in the industry.

4.4 Validity and reliability

4.4.1 Reliability
Most of the concerns regarding reliability were covered in section 3.4, and the
results presented here are subject to those concerns. The analysis of results in
presented in this section consisted of counting occurrences of codings, which is
highly reliable (several researchers are likely to come to the same count). In
other words, no further reliability concerns were introduced in the analysis.

4.4.2 Validity
We will consider the notions of face validity (does the method readily appear
to describe what it claims to describe?); social validity (are the results useful or
relevant beyond academic scope?); and content validity (a subset of empirical
validity—are all facets of what we claim to study captured by the method?).
We consider as a part of empirical validity whether or not the results of the
study support existing research. Finally, we consider the external validity (or
generalizability) of the study. As we posed several research questions, it will be
fitting to consider the validity of each part.

Our findings on architecture-centric tools support prior research, and as
such passes face validity. The findings likewise pass content validity, as the
full research question was more or less directly asked to interviewees, and their
responses were noted and coded for content. The results are not immediately
socially valid, as they provide no solution to the problem that such tools are
not in common use in industry, but rather provides further encouragement to
academics to research and understand why the tools established in academia do
not make it to the industry.

We identified several established patterns in use, which supports face validity
of these findings. We did, however, find them in use in hybrid situations, which
is less well supported in the literature. This finding has not been contradicted
by literature, and should therefore not be considered to detract from the face
validity of the findings.

The results capture existing practices in the industry, and may be considered
socially valid in that they can be used by practitioners to determine the kinds
of architectural approaches used by their peers.

The findings are by no means exhaustive, both due to the small sample
size, and due to the imperfect nature of interviews, in our case manifesting as
the interviewee controlling which parts of a system were covered in detail, and
therefore which architectural patterns we were likely to discover. The findings
can be considered to have content validity if the goal is seen as merely illustrating
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the types of nuance that exist in web application architectures, but not if the
goal is considered to be exhaustive.

4.5 Summary of findings
We documented a lack of formal architecture-centric tool usage in all the com-
panies we investigated, finding instead that they would steer their architectures
with principles, and rarely used diagrams when discussion architecture and ar-
chitectural changes.

We found a breadth of architectures, many unorthodox and in hybrid states
between architectures normally seen as opposing. In particular, we documented
two new common architectural patterns, parallel and chained web applications.
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Chapter 5

Web application architecture
evolution

Summary In this chapter we rely, again, on the data gathered in the study
described in chapter 3, this time focusing on answering research questions RQ1
and RQ2. The chapter presents the relevant results from the study, including
some data cleaning and analysis, and an ensuing discussion.

In order to evaluate the completeness of two existing change classification
frameworks, we reclassify the changes we identified in them, and find that one
does not allow us to accurately classify changes, and the other does so only
imprecisely. In order to evaluate the usefulness of the same frameworks in our
context, we see which patterns they allow us to identify in the architecture
evolution paths we constructed, and find that they do not provide any new
insights.

We identify common narratives in the architecture evolution paths, and
present them. We evaluate the method applied to finding common narratives,
indicating future improvements. Finally, we evaluate the reliability and validity
of the analysis presented in this chapter.

5.1 Concerns of this chapter
This chapter continues the presentation of results, analysis and discussion of the
data gathered by the study presented in chapter 3. This chapter, specifically,
focuses on answering research questions RQ1 and RQ2:

RQ1 How do layered web applications commonly change over the course of
their existence?
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RQ2 To what do existing architectural change classification frameworks shed
light on the reasons behind and effect of common architectural changes?

The coding legend relied on in this chapter is the same as the one introduced
in section 4.1. This chapter introduces a method for analysis of interview data
on architecture evolution in order to establish common narratives. Architecture
evolution paths are normally used to assist in deciding on how to get from a
source to a target architecture [7], but we use it as a descriptive framework for
classification of changes over time.

5.2 Relevant results
The coding of the interviews resulted in concrete timelines of architectural
changes in each company’s product. The time lines, however, contained much
specific information, making it hard to find patterns by comparison of time-
lines. In order to support such a comparison we interviewed, we constructed
more generic versions of the timelines of architectural changes. Each step taken
in the architecture was lifted to a more abstract level, reducing the level of de-
tail, and making the steps more akin to the operators found in Barnes, Garlan
& Schmerl’s framework of architecture evolution paths [7]. For example, de-
tails on programming languages, frameworks and specific cloud providers were
changed to more generic descriptions, changing e.g. ASP.NET MVC to the more
generic layered web application, and Microservices hosted in Amazon AWS ECS
to Cloud-hosted microservices.

During the cleaning we also ensured to construct a fully tagged version of
the architecture at each step of the evolution. In the original coding we had only
recorded patterns in the steps where they were mentioned by the interviewee,
but with this cleaning we ensured that each step of the architecture evolution
path mentioned all the applicable patterns at that point in time. This made
it possible to determine which types of applications were in existence over the
course of the product lifetimes.

Figure 5.1 shows an example of two architectural steps that have been made
generic, showing the explicitly described architecture changing, and the coding
of change reasons (ACR), manner of change (ACM), and architectural patterns
(AP). The full list of cleaned architecture evolution paths identified can be found
in appendix D.

During the coding of the interviews we identified and roughly categorized
reasons for architectural changes given by interviewees when inquired for these.
The questions asked during the interview were left open, and the interviewees’
responses were taken at face value.

The result of these questions are shown in figure 5.1, listing both how many
of the interviewees (out of 6 cases) mentioned a reason for architectural change,
and how many of the total architectural changes (out of 64 registered changes)
were explained by the reason. For many architectural changes, multiple reasons
were given. Notice, in particular, that reason 7, Unknown, lists the number
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4. Add new web application with new functionality
ACR.2 ACM.2
Load-balanced parallel and chained layered web applications in man-
aged hosting. Dbs in managed hosting. Cloud hosted. Static site.
AP.3.a AP.5 AP.6 AP.7 AP.9 AP.16.a AP.17

5. Introducing serverless functions
ACR.2 ACM.2
Load-balanced parallel and chained layered web applications in man-
aged hosting. Dbs in managed hosting. Cloud hosted. Static site.
Serverless functions.
AP.3.a AP.5 AP.6 AP.7 AP.9 AP.10 AP.16.a AP.17

Figure 5.1: Example of generic architectural changes.

of changes that no reason was indicated for, either because the interviewer did
not inquire about the particular change, or because no reason was given despite
inquiry.

Change reason (ACR)

Cases it
occurred in
(out of 6)

Total
occurrences
(out of 64)

1. Migrating when infrastructure automation is ready 1 1 (2%)
2. New feature requirement 6 17 (27%)
3. Poor performance under current conditions 5 18 (28%)
4. Need for future scalability 3 8 (13%)
5. Developer experience improvement 5 12 (19%)
6. Reduce infrastructure costs 2 2 (3%)
7. Unknown 5 13 (20%)
8. Industry popularity 4 5 (8%)
9. Eliminate error sources 4 5 (8%)
10. Escape vendor lock-in 1 2 (3%)
11. Adhere to bounding context 1 1 (2%)

Table 5.1: Reasons for architectural change identified in our study.

A single change was justified as waiting on infrastructure automation to
reach a certain level, migrating the infrastructure as soon as a new offering was
ready. This particular change related to serverless functions.

A lot of changes (27%) were related to feature requirements, usually improv-
ing or adding functionality. It is interesting to note that only feature changes
that resulted in architectural changes are noted here.

The biggest category of architectural changes (28%) were the ones justified
by poor performance under current conditions, but a large group (13%) were
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also justified by a need for future scalability. There was some overlap between
the two groups (changes justified by both reasons), but together they indicate
thatit is common for architectural changes to happen for performance reasons.

Twelve changes (19%) were driven by a desire to improve developer expe-
rience. One case in particular stands out, where the move to microservices
(away from a monolithic layered web application) was justified by microservices
enabling more developers to work in parallel without disturbing each others’
work.

A few changes (3%) were driven by a desire to reduce infrastructure cost;
a few (8%) by industry popularity of a technology, or a sense of the solution
being “the right way” to do something; a few (8%) by the desire to remove error
sources; a few (3%) to escape vendor lock-in; and a single change was made in
order to better adhere to the bounding contexts established in the architecture.

Across all 6 cases we identified a total of 64 distinct steps, spread across
the six different architecture evolution paths, with lengths ranging from 4 to 15
attached steps per path. There were 7 steps that we were unable to place in
order in any of the paths, so these were listed separately as detached steps.

The architecture evolution paths we constructed can be considered attempts
at constructing the underlying stories from the narrative conveyed by the inter-
viewees. From these stories we intend to find common narratives of architecture
evolution.

First, we established which steps were common between the architecture
evolution paths, noting which steps overlapped entirely, and which were similar
(see a full table of similarities noted in appendix F), looking for steps that could
reasonably be construed as applications of the same operator (in Barnes, Garlan
& Schmerl’s terminology), so e.g. any step that introduced a microservice to
the architecture would be noted as similar to any other step that introduced a
microservice to the architecture.

Figure 5.2 shows an overview of the paths, as well as the steps’ relationship
with each other. Each architecture evolution path is illustrated as steps (circular
elements) connected with arrows, showing the progression. Detached steps (that
could not be placed in time) are greyed out. Steps that are exactly equal are
connected with a thick colored line; steps that are similar are connected with a
dashed colored line. Redundant similarity lines have been eliminated, such that
a step that is similar to another step may be connected via a step they are also
both similar to. Each similarity cluster (a group of steps that are all similar to
each other) are connected by lines in a single color, but some clusters have the
same connection color.

As noted previously, our steps are not defined exactly as operators, as we
did not have the required data for establishing concrete transformations and
prerequisites for operators. We rely, instead, on the words of our interviewees,
assuming that they mean the same thing when using the same words.

We consider three types of narratives when identifying common narratives
in the architecture evolution paths we have constructed. We use X → Y to
denote a loose sequence, in which some step X occurs before some step Y in
an architecture evolution path, but not necessarily directly after each other. A

47



a.1

a.2

a.3

a.4

a.5.a

a.5.b

a.6

a.7

a.8

a.9

a.10

a.11

b.1

b.2

b.3

b.4.a

b.4.b

b.5

b.6

b.7

c.1

c.2

c.3

c.4

c.5

c.6

c.7

c.8.a

c.8.b

c.8.cc.9

c.10

c.11 c.12 c.13

c.14

d.1

d.2

d.3

d.4

e.1

e.2.a

e.2.b

e.3

e.4

e.5

e.6

e.7

f.1

f.2

f.3

f.4

f.5

f.6

f.7

f.8

f.9

f.10

f.11f.12f.13

f.17

f.16

f.15

f.14

Figure 5.2: Illustration of the similarities between the identified architecture
evolution paths.
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strict sequence, in which Y directly follows X is denoted X
strict−−−→ Y . We denote

a group of steps in no particular order in a parenthesis, so the steps X and Y
in no particular order is denoted (X,Y ).

• Sequences are strict sequences, in which one step exactly precedes an-
other step across several cases. E.g. steps X,Y : X

strict−−−→ Y are found in
more than one architecture evolution path.

• Stories are a weaker notion that sequences (all sequences are stories),
and describe common narratives in which steps may be separated by other
steps, but occur in the same order in several cases. E.g. steps X,Y : X →
Y are found in more than one architecture evolution path.

• Group precedences are a weaker notion than stories (all stories of length
3 or longer are group precedences), and describe situations where several
steps (in no particular order) have been taken before some resulting step
is taken. E.g. for a group of size 2, steps X,Y, Z : (X,Y )→ Z are found
in more than one architecture evolution path.

In order to limit notation, we later refer to common sequences, stories or
group precedences by the notation that describes any occurrence of them.

In order to determine the significance of each common narrative we iden-
tify, we establish some measures. We use the term weight w(n) of a common
narrative n to denote the number of occurrences of the narrative across the
architecture evolution paths. This gives us an indication of how seriously a
narrative should be taken.

We use the term step commonality cstep(s, n) of a step s in a narrative n to
denote how many of the occurrences of the step are in architecture evolution
paths in which the narrative is also present. That is, it is a measure of how
commonly this step is involved in the narrative.

The step commonality leads us to define mean commonality cmean(n) and
median commonality cmedian(n) for a narrative n, found by taking the mean or
median, respectively, of the step commonalities cstep(s, n) of all steps s ∈ n. A
mean commonality of cmean(n) < 0.5 indicates that, on average, the steps in
the narrative appear in more architecture evolution paths where the narrative
is not present than in those where it is.

We constructed a small program, narrative-finder, which identifies common
narratives of the type defined above (see appendix E on the program imple-
mentation). We include in our results for further analysis all narratives with a
weight of at least 2 (at least 2 out of 6 of the narratives we have constructed
present this particular narrative), and where all step commonalities for the steps
in the narrative are greater than 0.5 (on average, at least half of the cases in
which a step is present is in the identified common narrative).

We eliminated weaker narratives, such that if a common narrative describes
a subset of another common narrative and has a lower weight and commonality,
we discard it.
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The result was 1 equal section (in which steps were exact matches of each
other, see table 5.2), 1 similar section (in which steps may have just been similar
between stories, see table 5.3), 8 equal stories (see table 5.4), 11 similar stories
(see table 5.5), 1 equal group precedence (see table 5.6), and 3 similar group
precedences (see table 5.7).

# Common narrative Weight

Mean
common-

ality

Median
common-

ality
Sections, equal

1
a.1 First version: monolithic web application
a.2 Rewrite of entire architecture 2 0.83 0.83

Table 5.2: Common narratives of the type section, looking at exactly overlapping
steps, identified in the architecture evolution paths.

# Common narrative Weight

Mean
common-

ality

Median
common-

ality
Sections, similar

1
a.1 First version: monolithic web application
a.2 Rewrite of entire architecture 3 0.80 0.80

Table 5.3: Common narratives of the type section, treating similar steps as
overlapping, identified in the architecture evolution paths.

Despite eliminating some overlap, we still see a lot of the resulting common
narratives describe the same thing. For example, equal section 1; similar section
1; equal stories 1, 2, 4, 5, 6, and 7; and similar stories 1 and 2 all describe the
entirety or subsections of a common narrative, a.1→ a.2→ a.6→ a.7, but with
various subsections having different strengths. This is 10 common narratives
potentially describing the same occurrence: that a.1 is commonly followed by
a.2, and these are both commonly followed by a.6 and all of these are commonly
followed by a.7. The subsections of this chain that remain are the ones with
a higher weight or stronger either mean or median commonality than the long
chain itself, meaning that they might have a stronger connection than the long
chain has. For example, similar story 1, a.1 → a.2, has a weight of 3, which is
higher than the long chain, as well as comparable commonalities.

5.3 Discussion
In order to determine our results’ support for existing research in change clas-
sification, we investigated the completeness and usefulness of two established
change classification frameworks. With completeness we understand the ability
for the frameworks to adequately fit the changes we observed during our inter-
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# Common narrative Weight

Mean
common-

ality

Median
common-

ality
Stories, equal

1
a.2 Rewrite of entire application
a.6 Introduce scheduled jobs 2 0.83 0.83

2
a.2 Rewrite of entire application
a.7 Introduce message bus 2 0.83 0.83

3
a.4 Introduce a parallel web application
a.7 Introduce message bus 2 0.83 0.83

4

a.1 First version: monolithic web application
a.2 Rewrite of entire application
a.6 Introduce scheduled jobs 2 0.78 1

5

a.1 First version: monolithic web application
a.2 Rewrite of entire application
a.7 Introduce message bus 2 0.78 1

6

a.2 Rewrite of entire application
a.6 Introduce scheduled jobs
a.7 Introduce message bus 2 0.78 0.67

7

a.1 First version: monolithic web application
a.2 Rewrite of entire application
a.6 Introduce scheduled jobs
a.7 Introduce message bus 2 0.75 0.83

8
a.6 Introduce scheduled jobs
c.6 Add new web application strangling old one 2 0.83 0.83

Table 5.4: Common narratives of the type story, looking at exactly overlapping
steps, identified in the architecture evolution paths.
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# Common narrative Weight

Mean
common-

ality

Median
common-

ality
Stories, similar

1
a.1 First version: monolithic web application
a.2 Rewrite of entire architecture 3 0.80 0.80

2
a.2 Rewrite of entire architecture
a.7 Introduce message bus 3 0.80 0.80

3
a.4 Introduce a parallel web application
a.7 Introduce message bus 3 0.88 0.88

4

a.2 Rewrite of entire architecture
a.4 Introduce a parallel web application
a.7 Introduce message bus 3 0.78 0.75

5
a.2 Rewrite of entire architecture
a.9 Introduce a microservice 3 0.60 0.60

6
a.9 Introduce a microservice
b.4.b Move a component to managed infrastructure 3 0.80 0.80

7
a.4 Introduce a parallel web application
a.9 Introduce a microservice 3 0.68 0.68

8
a.7 Introduce message bus
c.9 Geographically distribute component 2 0.83 0.83

9
b.4.b Move a component to managed infrastructure
b.4.b Move a component to managed infrastructure 2 0.67 0.67

10
a.6 Introduce scheduled jobs
b.4.b Move a component to managed infrastructure 2 0.67 0.67

Table 5.5: Common narratives of the type story, treating similar steps as over-
lapping, identified in the architecture evolution paths.

# Common narrative Weight

Mean
common-

ality

Median
common-

ality
Group precedences, equal

1

a.4 Introduce a parallel web application and
a.6 Introduce scheduled jobs
Lead to:
a.9 Introduce a microservice 2 0.78 0.67

Table 5.6: Common narratives of the type group precedence, looking at exactly
overlapping steps, identified in the architecture evolution paths.
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# Common narrative Weight

Mean
common-

ality

Median
common-

ality
Group precedences, similar

1

a.2 Rewrite of entire architecture and
a.4 Introduce a parallel web application
Lead to:
a.7 Introduce message bus 3 0.78 0.75

2

a.2 Rewrite of entire architecture and
a.4 Introduce a parallel web application
Lead to:
a.9 Introduce a microservice 3 0.65 0.60

3

a.4 Introduce a parallel web application and
a.6 Introduce scheduled jobs
Lead to:
a.9 Introduce a microservice 3 0.78 0.75

Table 5.7: Common narratives of the type group precedence, treating similar
steps as overlapping, identified in the architecture evolution paths.
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views. With usefulness we understand the ability for the frameworks to shed
further light on the research we are undertaking, that is, to enable us to find
more patterns and similarities between the architecture evolution paths we have
identified.

The two frameworks we investigate are Williams and Carver’s SACCS-framework
for architectural change [67]; and Chapin et al.’s framework for architectural
change [13]. In particular, for the SACCS framework we consider only the clas-
sification of changes, as the many other considerations venture into a level of
detail where it is unlikely to correctly describe changes based on our interview
data. The SACCS framework’s consideration of changes’ effects on an architec-
ture overlap with Chapin et al.’s framework, but Chapin et al. employ a more
nuanced model, which will never result in less granular data than the application
of the SACCS equivalent.

The SACCS-framework classifies architectural changes as belonging to one
of four categories, based largely on the reasoning behind the change. This
overlaps largely with out coding of architectural change reasons, as our data
is based on open-ended requests for the interviewees to explain the reasons for
the architectural changes they described as happening to their system. We
answered the second question by attempting to place the reasons we had noted
in the SACCS-frameworks classifications, and then discussing our findings.

For Chapin et al.’s framework, there was little overlap between their classifi-
cation of architectural changes as based on concrete changes to the architecture.
For this reason, we performed a reclassification of each of our generic architec-
tural steps, placing the change in the fitting category in their framework. This
process led to a discussion, which answered the third question.

5.3.1 Evaluation of the SACCS-framework’s classification
In SACCS the motivation for a change is used for classification, rather than
its impact. In the framework, changes are categorized as corrective (respond
to defects), perfective (new or changed requirements), preventative (ease fu-
ture maintenance) or adaptive (moving to a new platform, accommodate new
standards) [67].

In order to determine how well the framework classifies the reasons given for
architectural changes in our study, we attmpted to map the reasouns we found
to the categories of the framework. The result of this mapping can be seen in
table 5.8.

We found no satisfying way of classifying our change categories ACR.1,
ACR.6, and ACR.8; and we found it difficult to find a satisfying fit for cat-
egory ACR.3. ACR.1 can be argued to not be a true reason, and rather a
reason for not making a change earlier. However, a reduction in infrastructure
costs (ACR.6), wanting to follow industry trends (ACR.8), and improving per-
formance of a platform (ACR.3) are all—when taken at face-value—meaningful
reasons for making architectural change that are hard to classify using SACCS’s
classification.
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Corrective
ACR.9 Eliminate error sources
(ACR.3 Poor performance
under current conditions)

Perfective
ACR.2 New feature requirement

Preventative
ACR.4 Need for future scalability

ACR.5 Developer experience improv.

Adaptive
ACR.10 Escape vendor lock-in

ACR.11 Adhere to bounding context

Not classified
ACR.1 Migrating when infrastructure automation is ready

ACR.6 Reduce infrastructure costs
ACR.8 Industry popularity

ACR.7 Unknown

Table 5.8: The changes we encountered in our study, grouped by the SACCS
framework’s classifications.

A reduction of infrastructure costs (ACR.6) could, at a stretch, be classified
as an adaptive change, but this classification seems to turn the chain of causality
on its head: new standards are being followed for a business reason; the reason
for the change is not to follow new standards or using a new platform, rather
the use of a new platform follows from the need to reduce costs.

While following industry trends (ACR.8) may not be a good or logically
defensible reason for architectural change, it was nonetheless encountered several
times during our interviews, and had a real impact on the decisions made by
the developers interviewed.

We reluctantly categorized improving performance of an application (ACR.3)
as a corrective change, as problems are being experienced with the application,
causing the change. The problems are, however, not necessarily caused by a de-
fect in the application, but may instead be caused by changing circumstances.
Categorizing the change as perfective may be a better solution, as this indicates
the changing requirements for the platform, but a concrete change in require-
ments may not have been the cause for the change, as it may simply be the
case that the application was defective or did not live up to already-established
requirements. These changes become hard to classify because the interviewed
businesses did not utilize formalized architecture requirements documents, and
so it is unclear exactly what the requirements for the applications were, when
poor performance was observed, and where the cause lies: in a change of re-
quirements, or a defect.

The framework provides no way of classifying changes where no explicit rea-
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son was given by the interviewees—at least not without a great deal of guessing
based on the concrete changes we observe—so we did not classify these.

Several of the changes observed in the architectures we studied had several
additive reasons behind them, for example both improving developer experience
(preventative) and escaping vendor lock-in (adaptive). These changes would be
hard to decisively classify using SACCS’s classification.

Overall, we find it difficult to accurately represent the changes we identified
in the SACCS classification framework. Too many of the changes we have ob-
served would be entirely unaccounted for. We suspect that using the framework
during interviews might yield a clear classification within the framework, but
openly asking interviewees about their reasons for changes did not yield readily
classifiable answers.

For this reason, and because many changes would fit into several classifica-
tions, we could find no way to use the SACCS classification to reveal patterns in
the architecture evolution paths we have constructed. This means our conclu-
sions on both completeness and usefulness for our subject of study are negative
for the SACCS-framework.

5.3.2 Evaluation of Chapin et al.’s framework
Chapin et al.’s framework considers the impact of a change to an architecture,
rather than the reason or intent behind the change, in order to classify them
[13].

In our coding of the interview notes we noted every time a change was
mentioned, and the type of step that was taken in the change. For example, we
noted if the change extracted functionality from an existing component, added
a new component, removed a component, or replaced a component with a new
one. A few other types of architectural changes were observed too: moving to a
more managed infrastructure, infrastructure as a service; introducing replication
of a component; changes in communication patterns; and finally, replacements
of the entire architecture at once.

Our classifications fits poorly with Chapin et al.’s framework, so a reclassi-
fication is necessary. We performed this reclassification by looking at each step
in the architecture evolution paths we had established, and deciding the impact
of the step, using the questions highlighted in figure 2.1. Chapin et al.’s frame-
work explicitly deals with potential overlap, by assigning the highest-impact
category to any change, making it possible to unambiguously classify a change.
The result of our reclassification of changes can be seen in table 5.9.

We did not initially expect any changes to end up outside the major cat-
egories C and D, as we assumed all the changes we had talked about at least
affected source code or infrastructure. As it turns out, the introduction of
Bounded Contexts in the architectures did not fit into those categories, as it
was a virtual change, a change to the company’s perception of their architec-
ture, rather than a change to any components in the architecture. Therefore we
have included the category B-1 Reformative, highlighted in green in the table.
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Change classification

Cases it
occurred in
(out of 6)

Total
occurrences
(out of 64)

B-1 Reformative 3 3
C-1 Groomative 2 3
C-2 Preventative 3 7
C-3 Performance 5 13
C-4 Adaptive 5 18
D-1 Reductive 0 0
D-2 Corrective 1 1
D-3 Enhancive 6 15

Table 5.9: Classification of changes identified in our study by Chapin et al.’s
framework [13].

In order to determine the correctness of the categorization, we must find a
way to evaluate it against the data we originally collected. One way of doing this
is evaluating how well items that ended in the default categories, those at the end
of each major grouping, fit the question asked for that category. For example, if
a change affected functionality, the default category is D-3 Enhancive (Did the
activities replace, add to, or extend the customer-experienced functionality? ); if
a change affected only source code, but not functionality, the default category
is C-4 Adaptive (Did the activities change the technology or resources used? ).
The following cases presented some difficulty in this regard:

• One change involved rewriting a component in the hope of better living up
to industry standards, and was classified as C-4 Adaptive, however neither
technology or resources used were changed—the component was rewritten
in the same technology using the same resources. We could identify no
better classification for the change.

• One step involving extracting a part of one component and moving it to
another, in order to better adhere to established bounding contexts, did
not readily fit into any category, but a source code change did occur and
no changes to perceived functionality occurred. The best fit we could find
was categorizing it as changing maintainability, but the lack of a fit would
otherwise have left it in the C-4 Adaptive category, where it fits even more
poorly.

• Several cases that were originally classified as ACR.4 Need for future scal-
ability were difficult to classify, as changes were made that affected per-
formance (which would at least lead to a classification in C-3), but could
also be argued to be a preemptive change to avoid future maintenance
activities (which would lead to a C-2 Preventative classification), or they
could be argued to change maintainability (resulting in a classification as
C-1 Groomative). In the end, we classified them as Preventative, despite
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the clear argument that preventing future maintenance by performing the
maintenance activity presently is nonsensical.

These examples illustrate that, contrary to Chapin et al.’s claims, the frame-
work does require degree of subjectivity in classification, where changes could
be argued to fit in more than one category, depending on interpretation of the
term maintainability, and how one perceives prevention of activities.

The C-4 Adaptive category was a broad catch-all category (with 18 of the
changes we identified being classified as such). This suggests that the category
may be advantageously split into smaller categories, offering a more nuanced
view of the changes observed. For example, it might be possible to identify
different types of technology or resource changes that we could meaningfully
distinguish between.

Despite the framework’s focus on impact on concrete architectures, some
very similar changes (when perceived from the view of a service diagram, or when
relying on the wording of interviewees) were categorized very differently. For
example, introducing microservices may be classified as D-3 Enhancive if they
also provide new functionality, C-3 Performative if they introduce performance
improvements (e.g. better scalability than before), or C-4 Adaptive if they do
neither of the prior ones. For microservices it is also an open question (and the
answers will be very subjective) as to how it changes maintainability—could
they reasonably be classified as C-1 Groomative?

This overlap of architectural change categories can be found in other re-
search, too. Di Francesco, Lago & Malavolta found the biggest driver of mi-
gration towards microservices to be functionality, introducing new functionality
with new functionality [30]. In Chapin et al.’s framework, the similarity in a mi-
gration towards microservices would be lost, as these changes would be classified
as Enhancive.

When regarding just the number of changes in each category, we see the
default categories containing most of the changes: C-4 and D-3 are by far the
most common types of change. This could be due to a bias towards these
categories, which would indicate that the categories do not accurately represent
the nuance present in architectures. On the other hand, it could be argued that
Adaptive and Enhancive changes should be the most commonly expected, when
asking about architectural evolution: Adaptive changes would contain many
architecturally significant changes, and change driven by functionlity would be
categorized as Enhancive.

We found no changes to classify as D-1 Reductive (reducing functionality),
which can be explained by such a reduction being unlikely to be architecturally
significant, unless an entire component is removed at once. Only a single change
was classified ass D-2 Corrective, which can be explained by a similar argument.

While Chapin et al. position their framework in opposition to others that
require subjectivity in determining the category of a change [13], we found
that a degree of subjectivity was indeed required for classification using their
framework. There were several changes with sufficient uncertainty that the clas-
sification happened on the whim of the researcher, rather than a strong feeling
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of security in the correctness of the classification. Many of these changes could
likely be objectively classified given enough time and questioning of interviewees.

A big issue remains an uncertainty of terms, in particular the definition
of maintainability, and what it means to change the maintainability of an ar-
chitecture. The framework did not prove useful as a way of expanding our
understanding of the architecture evolution paths we had constructed, as too
much nuance was lots in the classifications, and too many similar changes (in
the type of effect they had on components) were categorized differently.

While completeness could be argued for the framework, we did not find
classifications that seemed to accurately represent all the changes we identified.
Additionally, too many changes ended up in two categories, making it hard to
say anything nuanced about the chronological ordering of changes, and as such
the framework did not live up to the criteria of usefulness for our study.

5.3.3 Common architecture evolution paths
We explored some methods for finding common narratives in the architecture
evolution paths constructed from the interviews conducted during this study. A
common narrative can be seen as a first step towards establishing evolution path
styles—types of evolution that are formally described in terms of prerequisites
and abstract transformation steps, and impact [7]. Many of the resulting com-
mon narratives overlapped to some degree, so the large quantity of narratives
can be seen as misleading.

In this section, we will briefly cover the unique common narratives we iden-
tified, and discuss which of them are likely to have any merit, and which we
cannot find an explanation for. We cannot make any definite determinations
about common narratives based on the small sample size (6), but aim to explain
potential commonalities in web application architecture evolution that could be
investigated further in the future. In addition, the discussion of each identified
common narrative serves as a face value verification of the method of analysis
we employed.

First, the long section a.1 → a.2 → a.6 → a.7 likely describes two different
common narratives that happened to be present in the same cases. The section
a.1→ a.2 describes an initial prototype of a web application being built, followed
by a full rewrite. Note that this section occurred in half (3) of the cases we
studied, and is a common occurrence. In fact, four of the cases had an early
rewrite, but the last case’s rewrite did not start from an undistributed layered
web application, but instead a distributed one.

The story, a.6 → a.7 is slightly less common (occurring in only two of the
cases we studied), and describes the introduction of scheduled jobs to an archi-
tecture, followed by the introduction of a message bus. One explanation for this
story could be the need for actions in the system to be performed irrespective
of requests coming into the system. Scheduled jobs are one way of triggering
actions without a request, and message based communication, supported by
a message bus, is another. We observed a case in which scheduled jobs were
explicitly extracted to microservices communicating over message bus, showing
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that the same problem could be solved with both technologies, but with the
message bus offering greater chronological granularity by responding to events
immediately, rather than waiting for a timer.

We assume that the two stories are unconnected as we see no direct corre-
lation between an early rewrite of the entire system and a later introduction of
more complex actions in the application. An argument could be made, how-
ever, that an early rewrite may indicate greater willingness to make architectural
changes.

Parallel web applications as a predictor

We found several common narratives in which something was preceded by the
introduction of parallel web applications (a.4). Most (4) of the cases introduced
parallel web applications at some point, which means that these predictions may
be nothing more than the result of parallel web applications being common. In
other words, the common narratives may be false positives.

The strongest common narrative was parallel web applications preceding
the introduction of a message bus (weight 3, mean commonality 0.83, median
commonality 0.83). We also found narratives in which they preceded the intro-
ductions of scheduled jobs and microservices.

All of these cases have in common that they are signs of a fairly complex
architecture. We established the connection between scheduled jobs and message
buses before this section, and both could be used as coordination mechanisms
in more complex architectures with more than a single application. Especially
with the introduction of microservices, where the parallel web applications and
microservices need an efficient manner of communication.

The main question, however, is why parallel web applications commonly pre-
cede all these three patterns. Our best theory is that it has to do with taking
a first step towards a more complex system architecture. The parallel web ap-
plication means that more than one component exists in the system, but the
components are still fairly traditional, both layered web applications. Once com-
panies have experienced success with several components in their architecture,
we posit, they may be more likely to seek even more complex architectures.

Full architecture rewrite as a predictor

Several common narratives had a full architecture rewrite (as covered in the be-
ginning of this section) as a predictor of later changes. With varying degrees of
certainty, we found rewrites predicting parallel web applications and then mes-
sage bus (a.2→ a.4→ a.7); the introduction of microservices (a.2→ a.9); and
a group precedence of a full architecture rewrite and the introduction of parallel
web applications predicting the introduction of microservices ((a.2, a.4)→ a.9).

This could be found to support the theory that an early rewrite shows a
greater willingness to make architectural changes or build more complex archi-
tectures later in the lifespan of an application. On the other hand, rewrites are
common (4 out of 6 cases), and the narratives may just be an expression of
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common patterns that happen to be preceded by a more common pattern. All
of these mentioned common narratives have a weight of 3, however, meaning
that they are present in 75% of cases that contain a full architecture rewrite,
supporting the theory of a non-random occurrence.

The case a.2 → a.4 → a.7 has 100% step commonality for the step a.7, the
introduction of message bus, meaning that this is the case for all introductions
of a message bus that we have seen, making it unlikely that it is entirely random.
It is definitely possible to envision the introduction of a message bus without
an early full architecture rewrite, but in our data set no such cases were found.

Microservices

The introduction of microservices was the result of a common narrative iden-
tified. We found the introduction of parallel web applications to predict it
(a.4 → a.9, weight 3, mean commonality 0.68, median commonality 0.68) and
a group precedence of parallel web application and scheduled jobs introduc-
tion to predict it ((a.4, a.6) → a.9, weight 3, mean commonality 0.78, median
commonality 0.75).

The group precedence is strong, and makes sense at face value, too. As
previously discussed, parallel web applications can be seen as a first step towards
running several services in an architecture; and scheduled jobs indicate a need
for more complex action in the system, not dependent on user requests. The
microservice pattern can be used as a further step, that addresses some of the
same concerns as the scheduled jobs.

What leads to moving to managed infrastructure?

The existence of ever more managed infrastructure offerings may itself be a
reason that managed infrastructure becomes common. With managed infras-
tructure we mean services such as AWS Lambda or Google Cloud Functions
offering managed hosting for serverless functions, and AWS ECS, AWS Fargate,
or Google Cloud Kubernetes Engine offering managed hosting for containers
[68, 71]. A move from a dedicated machine to a VM could also be considered a
move towards more managed infrastructure, as could a move from a single VM
to a cluster of automatically scaling VMs (such as AWS EC2 or Google Cloud
Compute Engine [68, 71]).

While we applied no framework for determining which level of managed
infrastructure an architecture moved to in a given step (in fact we know of no
such framework), we can try and see if any general patterns emerge as to what
leads to a move to more managed infrastructures. This is captured by the step
b.4.b in the common narratives we have gathered.

We found the introduction of scheduled jobs (a.6 → b.4.b, weight 2, mean
commonality 0.67, median commonality 0.67) and the introduction of microser-
vices (a.9→ b.4.b, weight 3, mean commonality 0.80, median commonality 0.80)
to predict a move to managed infrastructure. The latter has 100% step com-
monality for step b.4.b, and a move to more managed infrastructure driven
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by the introduction of microservices passes face value validation: with many
smaller services, any manual infrastructure maintenance will be forced to scale.
Automating parts of maintenance, by using more managed infrastructure, will
alleviate this pressure. The introduction of scheduled jobs, as previously noted,
may be an indication that a more complex communication pattern is needed
in an architecture, which we have previously connected with the introduction
of microservices. Additionally, it is possible to move scheduling to managed
infrastructure with platforms such as AWS CloudWatch [68].

We also found an interesting narrative showing that moving to more man-
aged infrastructure once is a predictor of doing it again (b.4.b → b.4.b). This
highlights the lack of a framework for determining a level of managed infrastruc-
ture, as this would reveal if the narrative describes moves to similarly managed
infrastructure, or moves to increasingly managed infrastructure.

Geographic distribution

A single common narrative led to geographic distribution. The step predicting
geographic distribution was the introduction of a message bus (a.7→ c.9, weight
2), and has 100% step commonality for introduction of geographic distribution.
We can read this as geographic distribution being more likely to be introduced
in fairly complex architectures with complex communication. It is conceivable
that geographic distribution could be introduced in architectures with nothing
more than a replicated layered web application, but we found no such cases.
It may be an indication of which point in an architecture’s lifetime geographic
distribution becomes a concern.

Evaluation of the applied method

As the method used for constructing architecture evolution paths and analyz-
ing them for common narratives is novel, a discussion of its applicability and
usefulness is merited. We did identify interesting common narratives, a novel
result, and establish support for them, and the method allowed for a discussion
of the interaction of various common narratives, so we can conclude that the
method was useful and applicable to interview data. However, the application
of the method was experimental and we discovered several manners in which it
may be improved before being applied in the future.

Granularity and abstraction level of steps In constructing the architec-
ture evolution paths from interview data, some changes as reported by intervie-
wees contained several concrete architectural changes, on the abstraction level
of an operator in the terminology of Barnes, Garlan & Schmerl [7]. This led us
to split these steps into several smaller steps (e.g. b.4.a and b.4.b occurred at
the same time), in order to be able to more readily map similarities between
steps. Unfortunately, these steps were represented as strictly in order (e.g. b.4.b
strictly following b.4.a), rather than occurring at the same time, when we were
looking for narratives. A manual check found no missed common narratives for
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this reason, but in the future it would be useful to be able to represent these op-
erators as occurring at the same time, and allowing them to appear in common
narratives in any order.

The first steps in each architecture evolution path were noted as one sin-
gle step, creating an entire architecture at once. This obscured similarities
and differences between the architectures when regarding only the architecture
evolution paths, and weakened some of the common narratives identified. For
example, one architecture started in somewhat managed architecture, but we
had no way of representing this as similar to the other architectures that later
moved to managed architectures. An alternative approach would have been
representing each initial architecture as a simple layered web application and
subsequent operators applied to it, all happening at the same time. Mapping
similarities between these operators and those used later might have revealed,
strengthened, or weakened common narratives, and thus provided us with data
more accurately representing the common progression of layered web application
architectures.

We considered two levels of similarity in the paths we analyzed: steps exactly
equal to each other, and steps similar to each other. It might be useful to
reevaluate this choice, and consider whether a more granular similarity model is
needed, e.g. a level of similarity in which adding a microservice is not regarded
as being similar to introducing the concept of microservices (which would occur
alongside the first microservice’s introduction).

We found it difficult, in the interviews, to get a detailed description of when
each component in the architecture was introduced. E.g. once the concept
of microservices was established in an architecture, further microservices added
were not found architecturally significant, and was skipped over by interviewees.
We could have embraced this, and changed the abstraction level of our architec-
ture evolution paths, considering only changes in patterns and not individual
components. Experimentation on this front is needed in order to find the right
approach.

Elimination of uncommon narratives We decided to eliminate from man-
ual analysis any common narrative n containing any step s with a step common-
ality cstep(s, n) ≤ 0.5. This decision may have inadvertently eliminated some
narratives in which common steps produce uncommon results, which would be
an interesting result. To investigate whether this was the case, we listed the
narratives eliminated due to low step commonality where the last step had a
step commonality of 1. This produced a common narrative leading to the es-
tablishment of geographical distribution (c.9), but none of the steps seemed
particularly connected, at least not moreso than what was already covered by
common narratives we included in our manual analysis.

We also found an eliminated narrative where the introduction of parallel web
applications led to the introduction of serverless functions, which in turn led to
the introduction of microservices. This narrative runs counter to our intuition,
in which we expect more managed infrastructure (e.g. serverless) to follow less
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managed infrastructure (e.g. microservices), not the inverse, as we see it here.
It may, however, be a common narrative that was eliminated, and therefore we
are including it in this discussion.

Identifying interesting common narratives We chose two metrics in order
to assess the significance of a common narrative, weight and commonality. More
heuristics would be interesting to consider, such as the length of a common
narrative. Additionally, even after attempting to eliminate duplicate narratives,
we had to consolidate several results representing the same common narrative in
different ways (different subsections with a stronger commonality or weight than
the full section). We were very careful not to eliminate potentially interesting
common narratives, and therefore chose a conservative elimination strategy, but
this could be further refined in the future.

Reasons for change Despite collecting data on reasons behind the archi-
tectural changes made, we found no useful way to include it in the analysis
of architecture evolution paths. This seems like an obvious deficiency, as the
driver of changes is entirely left out of our consideration, and much research in
the architecture field indicates that drivers of change are significant to consider.

Classification of managed infrastructure Our classification of moving to
managed infrastructure was vague and nondescript. A framework for this classi-
fication, allowing for a comparison of different levels of managed infrastructure,
would have been helpful in shedding light on how architectures are migrated
towards managed infrastructure environments—whether it is step-wise, or all at
once, or something in-between.

5.4 Validity and reliability
The reliability and validity considerations mentioned in 3.4 apply wholesale to
the findings of this chapter. Some further considerations can be made.

5.4.1 Reliability
Turning the concrete architecture timelines into something resembling architec-
ture evolution paths was a wholly subjective process, and likely to yield different
results if performed by different researchers. The identification of interesting
common narratives, however, was performed based on objective measures and
using a fully mechanical method.

5.4.2 Validity
When looking at validity, we consider the same types of validity as mentioned
in 4.4.2, namely face validity, social validity, empirical and content validity, and
external validity.
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First, when looking into the applicability of other change frameworks to our
study, we found that they were not useful. This runs counter to existing research,
as both frameworks were established based on existing data. It is, however,
what we expected to see from the outset, when applying the frameworks with
a specific goal in mind that does not necessarily align with the (implicit) goal
of the frameworks. The result is useful because it shows that none of these
frameworks are universally applicable—only a single case is needed to show
this. In terms of social validity, we consider it a useful result, as it may guide
future work in architecture change classification, and open up the possibility of
nuance and variety in frameworks.

Now, considering architecture evolution paths, we see some cases counter to
what we would expect. For example, an expected result could have been seeing
a move to managed infrastructure leading to the introduction of microservices,
then leading to the introduction of serverless—as a natural progression towards
more and more managed infrastructure—but we see the last two steps of this
expected order reversed. On the other hand, many of the cases we found were
explained by plausible (albeit untested) theories of architectural progression in
the discussion, which supports face validity.

The results are not particularly actionable outside of academic circles, other
than in providing a perspective on some common paths that layered web appli-
cations take when changing over time, which may inspire practitioners in their
decisions. A method of determining the quality of various paths would have
made the results much more useful in this regard.

With regards to content validity, we found no way of integrating reasons for
changes into our analysis, which is a limitation of the analysis, meaning that
it does not, in fact, cover all of the similarities we may find in architectural
evolution. If we limit our expectation to that which is captured by operators,
however, this concern goes away, and the study is indeed covering.

We found architecture evolution paths to be a useful lens through which to
view the changes that happen to an architecture. As such, our research supports
this existing research.

5.5 Summary of findings
We evaluated two change frameworks for completeness given our observed changes
and usefulness for our study. We found one framework to be complete, but with
many inadequate classifications. We found the other framework to be incom-
plete, as it was not possible to classify all the changes we observed. None of the
frameworks were found to be useful in our context of study, as none of them
classified changes in a way that allowed us to find patterns of changes shared
between architecture evolution paths.

These findings support the view that different taxonomies and frameworks
for classification provide different views, but are rarely universally applicable.
In the end, a search for an ultimate change classification framework may be
futile—a more fruitful approach may be found in better describing the scenarios
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in which various classification frameworks provide value, and which value it is
they provide, and thus allow software architecture researchers and practitioners
to choose the relevant frameworks for their endeavours.

We posited some theories that might explain the narratives we identified.
These are untested, and the obvious next step would be investigating these,
before they are taken as established. The theories indicate only that we assess
that there may be a reasonable explanation for the common narrative. A first
step towards such an investigation would be performing more studies with a
similar methodology to the one employed here, in order to collect a larger data
set.

As the research method applied in this study is novel, we found several
potential future improvements, from the way architecture evolution paths are
constructed, to which facets are included (notably, we did not include reported
reasons for change), and better heuristics for determining which narratives merit
further analysis.

We found several common narratives which we could best explain by seeing
certain steps as an indication of either willingness to make architectural changes,
or an indication of complexity of an architecture. It may turn out that there
are better explanations for these common narratives, given further study and
more data points.

We found strong support for the common narrative that is writing a proto-
type of a web application, followed by a full rewrite. We found strong support
that architectures commonly experiment with two parallel web applications be-
fore moving towards an architecture with more moving parts, such as a mi-
croservice architecture. Finally, we found that architectures that have moved
components towards more managed infrastructure often do so again in the fu-
ture.
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Chapter 6

Data in web applications:
generation, persistence and
consistency

Summary This chapter first connects the fields of distributed systems re-
search and database research to that of web engineering. First an argument
that web applications are inherently at-best weakly consistent systems is pro-
vided, along with a perspective on how web applications should be considered
in distributed systems terms.

Secondly, a taxonomy for data and data generation in web applications is pre-
sented, hinting at some semantics and allowing for some practices from database
research to be applied to web applications. The taxonomy further hints at a
larger theoretical framework for understanding web applications, which has been
left for future work.

The taxonomy is evaluated through an application to the interview data from
the study presented in chapter 3, providing an answer to research question RQ5
by illustrating some of the experimentation with data refinement and persistence
present in web applications, as well as where there are opportunities for further
exploration in this regard.

6.1 Data and consistency in web applications
In chapter 4 we established a breadth and variety of web application architec-
tures, especially showing complexity of architectures of web application servers.
We introduced, in the background, a definition of web applications allowing for
such breadth. In this section we will use this definition to link the fields of
database and distributed systems research with web engineering.
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6.1.1 Web applications as database systems
We can draw some parallels between database system research and web appli-
cations. A typical web application is a tiered application, in which some state
is stored in a database. Barring applications that rely on event sourcing, this
state is usually limited to the current application state, e.g. entries representing
users or products. Event sourcing gives us a way of understanding this state as
a view over base relations (in this case events). Whether we persist the events
that occur in a system (as event sourced systems do), or we do not, the events do
occur and have an effect to the application state. In event sourced systems this
change is made explicit, as the creation of a new event in the event store results
in the modification of some aggregate, which is a view whose base relations are
events in the system.

In applications that are not event sourced, the business logic that updates
application state based on the event, can be seen as manual view maintenance,
updating the user or product, based on events that would in an event sourced
system record happenings such as user created or order paid. This view main-
tenance often happens after a request has been made, and before a response
has been sent to the web client. This categorizes this type of maintenance as
eager, but as current state is often taken into account it can also be seen as
incremental.

The responses a web application generates can be seen as another, more
refined, type of view. It is based on the state of the application, and usually
generated once requested. In CGI, this is part of what the application program
would do. These views are not materialized, as they are only generated once
requested, and no maintenance happens on them.

Neither responses nor application state are ever stale from the application’s
point of view, as they are eagerly maintained or fully rebuilt on request. It
leaves open the obvious question, however, of how database performance im-
provement techniques might be utilized in web applications. Event sourcing is
an example of one such approach, in which events are explicitly captured, and
a more automated form of view maintenance happens.

Likewise, we can draw a parallel between database systems caching data on
the client, or guaranteeing certain consistency properties through client imple-
mentations, and the use of browsers as clients in web applications. The client
in a web application can be used, for example, to ensure read-your-own-writes
consistency from the user’s perspective, showing always the most recent state
for that client, even before it has propagated to the server, or before it has
propagated to all nodes of the server-side application.

Often, propagation to the server, from the perspective of the client, will
simply be equivalent to propagation to the server’s underlying storage system,
which will likely be one or more databases or storage systems in the sense of
those systems discussed in the previous sections.

In the above, we have illustrated that many of the interactions of web appli-
cations can in fact be thought of in terms of distributed systems and database
research. Doing so, would allow the application of practices from those fields to
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be applied to web applications, few of which are in use in the industry currently.

6.1.2 Web applications are distributed systems with weak
consistency

When seen from the eyes of the user, web applications, like databases and stor-
age systems, act as an interface for interacting with state. Users will have similar
expectations of consistency and correctness of the data they are presented, and
therefore it is equally meaningful to talk about the consistency properties of
web applications. Given the broad definition of web applications given in the
background chapter, we will argue that web applications should be considered
to be weakly consistent systems, and that attempts at creating more consistent
web applications is generally untenable. This perspective can be used to inform
decisions on consistency tradeoffs in the constituent parts of a web application.
For example, the question of consistency within the backend of a web appli-
cation is no longer simply which kind of consistency is acceptable, but which
kind is acceptable given that the user will never perceive the system as wholly
consistent.

With storage systems the consistency property describes how the state in the
system is perceived or how it propagates through the system. Clients are seen
as external to the system, and the system guarantees are about how queries for
data will be perceived on the clients. The clients may be implemented in such a
way that they provide stronger guarantees (e.g. read-your-writes or monotonic
reads), but when considering the consistency of the state of the system, the
client is not included as a consistent component of the system.

One could argue that the same should be true for the client-server relation-
ship in web applications, that consistency is only considered on the server. In
a web application, however, according to our definition, both client and server
are seen as execution environments, potentially performing business related op-
erations on business state. From a user perspective, and in accordance with the
definition we have of web applications, execution on the client of a web applica-
tion happens on state of the web application. The state of the web application
is not simply from the server and inwards, but extends to the client, and so must
consistency properties, in order to be considered properties of the application.

The opposite position, that clients should not be considered as part of the
application when considering consistency, relies on a primitive and transactional
notion of client behavior, in which users are explicitly aware of client transactions
with the server. This makes sense for storage systems, in which transactions
performed by the client are explicit, and made sense in web applications before
clients became execution platforms; however in the rich user interfaces of many
modern web applications this is not the case. In particular, read-your-writes and
monotonic reads ensured by client-side caching in storage systems makes sense
exactly because the client performs actions such as reading or writing values,
and nothing more complex. A web application client commonly executes long-
running code, and contains local state that is acted upon without verifying its
freshness with the server every step of the way.
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The consistency of a web server can be guaranteed in exactly the same way
as that of any storage system, as a web server will typically depend exclusively
on a storage system for its state, sometimes with some caching in the application
code, in which cached elements are invalidated as new elements are written to
the storage system. We can also ensure the consistency of the writes of a client
with the server (i.e. that the client does not indicate a successful write before
it has been confirmed by the server), and using techniques similar to read-your-
writes we can ensure that these appear immediately consistent on the client,
too, as view maintenance of the state on the server happens eagerly.

Consistency becomes infeasible when considering how users perceive state
from web application clients. For example, if a client receives a response from
the server, and allows a user to act on it, a scheduled job may change the state
on the server. This change does not automatically propagate to the client, and
so the user will be acting on stale data when they interact with the client, and a
potential submission that feels like a change may overwrite other changes, never
seen by the user, on the server.

A common example of the importance of consistency in applications is bank-
ing. Even under the assumption that the business logic in the server application
functions as it should, ensuring consistent state and consistent transactions,
users may make decisions they did not want to, due to the disconnect between
client and server state. Shklar & Rosen discuss dirty reads from a database from
the perspective of a web application server, where a request to read data is made
while a transaction modifying the data is processing, noting that they “could be
considered acceptable”, but recommend avoiding them in critical applications,
such as banking [61]. The concern is that a dirty read may lead user A to see
an account balance higher than it actually will be, once the user acts, because
user B’s transferal of money to a different account is processing.

However, even without dirty reads, as should be evident from our discussion
of server and client state above, this situation is possible. If user A requests
an account overview, the server responds, and then user B performs the trans-
feral, the state perceived by user A when making their decision (after user B’s
transferal has completed) will still be stale: the web application server does not
propagate updated values to clients. That is, avoiding dirty reads does noth-
ing to alleviate the problem, except in exceedingly rare edge cases. In fact, we
would consider the case we describe to be more common than a read happen-
ing during a database transaction. The consequence remains the same: user
A may perform an action that they would not have performed given accurate
up-to-date information about the account balance.

While web applications do not commonly propagate state to clients, it is
definitely possible. Technologies such as WebSockets would allow servers to
propagate changes (or notices of data invalidation) to the relevant clients [75].
While this can be feasibly used to ensure eventual consistency (and solve many
cases of the issue described above), it becomes infeasible to ensure strong con-
sistency in this manner for any significant number of clients.

While a distributed system can ensure strong consistency given that the
number of nodes written to for each change added to the number of nodes read
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from for each read is greater than the total number of storage nodes in the
system (W + R > N , as introduced in the background chapter [66]), this is not
the case for web applications. In web applications, as noted before, clients do
not expose transactions as their way of interacting with the system. Each client
displaying information from the web application is an active client, from which
users are perceiving state, not as the result of some previous request, but as
interactive. As such, the system would have to propagate the updated values
to all active client before confirming a write, in order to ensure freshness of all
perceived values in the system. This would result in incredibly long write times
in the case where any significant number of clients are connected to the system.

In other words, it is infeasible to wait for updated values to propagate to all
active clients before confirming a write, but writes can still be used to ensure
eventual consistency of clients.

Accepting that the web application will never be perceived by users as
strongly consistent, and accepting clients as parts of the application system,
opens up new possibilities. Clients can, for example, update state from each
other, rather than relying solely on a server to hold state. Initiatives such as
WebTorrent are potentially an early step in this direction [78].

To summarize, we presented in this section an argument that web applica-
tions can never be strongly consistent. While the web application’s server-side
can be considered in the same way as any other distributed system, the inclusion
of active and executing clients changes the users’ perception of web applications,
and hence the way consistency should be conceived of in web applications. Web
applications will at best be perceived by users as a type of eventually consis-
tent.

6.2 A taxonomy of data in web applications
Earlier in this chapter, we introduced a perspective on web applications, viewing
them through the lens of database and distributed systems research. In this
section we expand on this perspective, introducing a taxonomy of data in web
applications, that allows for the categorization along lines of these observations,
focusing on how and when data is generated, and whether or not it is persisted
in the system.

As we noted before, a holistic view of a web application will have to take into
account both client and server parts, and the server of a web application may
itself be any arbitrarily complex system. In order to focus our taxonomy, we
center the terms we use around the communication between client and server,
thus finding commonality between all web applications.

Web applications that employ caching may do so at many levels of the appli-
cation, and at various degrees of aggregation and refinement, with each caching
layer containing data in a format as close to the needed one as possible. For
example, a Varnish reverse-proxy cache will cache responses exactly as they will
be needed to send to the client [65].

In event sourced applications, the most basic data is referred to as events,
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and what would traditionally be considered the application state is derived from
the events. In event sourced systems, events can be replayed to regenerate the
state, and while the state is persisted in the system, it is not considered the
base truth [25]. We argued that these events exist whether or not they are
persisted. In many applications they are not, and this means that state cannot
be rederived, but it still is initially derived from events that occur in the system.

This distinction into more or less basic data types is also used in the Lambda
architecture introduced by Marz & Warren in a 2015 book, where the most
basic type of data is referred to as core data, and everything else in the system
is derived from this [49]. We define the rawness of data in opposition to the
refinement : the more basic data is, and the more accurately it represents input
to a system, the more raw it is.1 The more data has been changed for the
purpose of representing what the system concerns itself with, the more refined
it is. For example, a full HTTP request is more raw than an event, and the
state typically stored in a web application database is more refined than events.

The most raw data in a system will typically be considered immutable. Once
an event has happened it does not make sense that it should later be considered
to not have happened. Refined data, such as current state of an application, is
usually mutable.

We define as the source of truth of a system the most raw data that the
system persists. That is, from the source of truth, more refined representations
of data can be derived, but if the source of truth is somewhat refined, it is
usually impossible to find more raw versions of the data. We can derive state
from events, but not vice versa.

Marz & Warren abstractly represent the derivation of more refined data as
a function being called with the entire core data set as input. That is, every
refined type of data in the system can be described by some function that takes
all the core data as input [49]. In event sourcing databases such as Event Store,
this is represented by projections, which define a set of events that they expect
to take as input, and describe how these events modify the state of the resulting
object [69].

In practice it may make sense to view the refinement as a stepwise process.
For example, some refined data may be more accurately described as depending
on already-refined data, rather than the most raw data of a system. That is,
the output of one refinement function may be part of the input of another. The
ultimate result could technically be computed from the original data, but the
mental model provided by seeing it as a stepwise process is desireable: it allows
us to deconstruct what happens in web applications as a set of logical refinements
that may be combined in various ways, not as black boxes with ultimate output.
For example, both a user profile page (highly refined) and an overview of users
(highly refined) may depend on the same user profile (constructed from events).

For consistency, we will henceforth refer to the rawest meaningful form of
data in a web application (representing some request or event in the system,

1This definition of rawness is in agreement with that used by Marz & Warren, who propose
how much data can be derived from data as a proxy measure of its rawness: “[t]he rawer your
data, the more questions you can ask of it” [49].
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from which all other data is derived) as raw data. Data with any degree of
refinement we will term refined data. The most refined types of data in a web
application we will term responses. Responses will typically be the exact content
of a response sent from a web server to a client, or a prepared page on the client
that it can display. Figure 6.1 shows the typical flow of refinement in a web
application server, where data is created as raw data, and is refined into refined
data and eventually responses.

Raw data Refined data Responses
incoming data response

Figure 6.1: Data in a web application arrives to a web application server in the
form of raw data, and is refined, eventually into the form of responses.

All web applications contain all three types of data—raw data, refined data
and responses—but it varies from application to application which they choose
to persist and where. Data that is not persisted we term transient. Refined
data is a view in database terminology, and persisted refined data is therefore
a materialized view. We can consider modifications to persisted refined data in
the same manner as we consider view maintenance.

Responses are commonly persisted in caches such as Varnish, where the re-
sponse is stored between the client and server on a reverse-proxy server (concep-
tually part of the server in the web application, but often in practice a separate
server from the web application server). The reverse-proxy server short-circuits
requests for unchanging content, or dynamic content which can safely be cached,
and responds to request for this data without consulting the web application
server, saving computation time [65].

Consider the example of a simple MVC web application (such as an appli-
cation built with Ruby on Rails). In such an application, requests come in, but
are not stored in any form. The state of the web application is modified based
on the requests, and finally responses are built on the fly and sent back, but
also never stored [63]. As such, these web applications persist only refined data,
but raw data and responses are transient.

6.2.1 Refinement of data
We can define any refinement step of data as a refinement function, which takes
as input the less-refined data on which it depends. In practice, a refinement
will typically depend on one or more types of data filtered by some parameter.
For example, a user profile (a domain object, refined data) will depend on user-
events that concern the user with the ID of the user, whereas a user profile page
(response) will depend on a user profile with a specific ID.

The approach taken by Marz & Warren of abstractly defining refinement
functions over the entire dataset avoids having to deal with complex semantics
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of the data and data dependencies [49]. In Event Store, the approach is different,
and it is possible to pick the relevant streams based on any of their contents.
Every time a new event arrives in Event Store, it will be tested by the filter
to see if it should be passed to the refinement function (called a when-step).
Finally, Event Store provides a Partition function, which, instead of including
or excluding events based on a predicate, partitions by some field [69].

Partitioning provides a useful way of describing refinement functions that
take several types of data as input and produces multiple results. In our example
of user profiles, our refinement function would depend on relevant events (from
the relevant streams), partitioned by that user ID. Listing 6.1 shows how the
code for such a projection might look in Event Store.

1 fromStreams ([ "user_created", "user_email_confirmed", "user_deleted" ])
2 .partitionBy ((event) => event.body.userId)
3 .when({
4 $initShared: () => {
5 return {
6 deletedAt: null ,
7 emailConfirmedAt: null
8 };
9 },

10 user_created: (state , event) => {
11 state.id = event.body.userId;
12 state.username = event.body.username;
13 state.email = event.body.email;
14 state.passwordHash = event.body.passwordHash;
15 state.passwordSalt = event.body.passwordSalt;
16 state.createdAt = event.body.timestamp;
17 },
18 user_email_confirmed: (state , event) => {
19 state.emailConfirmedAt = event.body.timestamp;
20 },
21 user_deleted: (state , event) => {
22 state.deletedAt = event.body.timestamp;
23 }
24 })
25 .outputState ();

Listing 6.1: An Event Store projection describing a user based on events.

This covers abstractly how a refinement function should be seen: a function
that depends on one or more types of data, potentially partitioned by some
variable, producing one or more results. A refinement function may rely on any
kind of data, and not exclusively events.2

2Event Store has a similar approach, where projections can result in new streams, on which
further projections can be constructed [69].
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To add more complexity, a refinement function may depend on one type
of data that is partitioned by some variable, and another that is not. For
example, a user profile page may have a side bar advertising the most sold
products through the web application. The refinement function outputting the
user profile page would then depend on users partitioned by ID, as well as the
list of most sold products (a list itself refined from information about products
and purchases), which would be the same list for every user profile page.

Finally, a refinement function may depend on several data sources parti-
tioned by different variables, in which case it should would create every com-
bination of the two variables. For example, a product page on a website that
displays the current user’s name when the user is logged in, will describe a page
constructed from any combination of product and user.

Recall that refinement functions are abstractions, describing the way in
which data is derived in web applications, and by no means practically ap-
plicable as presented. Constructing every product-user combination would be
infeasible.

Instead, a refinement function, given the variables its input is partitioned on,
can produce the exact result stemming from that variable combination. This
will be more similar to what concretely happens in a web application when a
logged in user requests to view a product: the page for that specific user and
that specific product is generated, and then returned.

We use the term response generation strategies for decisions on how and
when to execute various refinement functions involved in the production of a
particular response. We will leave the formalization of refinement functions and
further exploration of response generation strategies as future work.

For now, the importance of a refinement function is that it describes a refine-
ment of some data into more refined data, which conceptually describes what
happens when state changes occur in web applications, as well as when responses
are generated.

In the case of a simple MVC web application, a request to create a new user
will result in a virtual user_created event entering the web server, which results
in the update of the application state, creating a user entry, theoretically seen as
a refinement function reacting to the event, and finally a response is generated.
If the resulting page is a user profile page for the newly created user, the page
generation can seen theoretically as a refinement function refining the user entry
in the database into a HTML response.

6.2.2 Data refinement triggers
We hinted briefly, when introducing the concept of response generation strate-
gies, at the time of generation of a certain type of data being significant. Several
types of data refinement triggers exist:

On request refined data types are generated exactly when they are requested.
A great example of this is responses from web application servers which
are typically generated when they are needed: when a user requests to
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see the index page of a forum, the page is refined from the collections of
forum posts and users that exist in the application.

Cached data types are generated on request, and then stored until they expiry.
Expiry may be determined by a time-to-live or be managed manually by
the application. Responses are commonly cached in reverse-proxy caches.

On change refined data types are generated when their underlying data changes.
If a data type is generated on change, all the data types it depends on must
also be generated on change (or the change would not propagate). This
is the model we see in web application server state both with or without
event sourcing: new events change the underlying data, when results in
either the server’s application code or the event store updating the state.

At intervals refined data types are generated from their underlying data types
at set intervals.

Pre-requested data types are generated when a request for their generation
comes in. They differ from data types generated on request in that the
request for generation and the requisition of the actual result are discon-
nected. A typical example of pre-requested data types are reports that
are generated from large amounts of aggregate data, to be viewed once
generation has completed.

It is evident that certain of these data generation times are incompatible
with strongly consistent systems. Data that is generated at intervals or that
has pre-requested generation will necessarily be outdated when underlying data
changes between generations. Caching (or, more precisely, cache invalidation)
has to be applied carefully in order to ensure consistency.

From the perspective of a web application server, refinement on request will
be strongly consistent with the underlying storage system as long as the gener-
ation itself does not allow write requests to finish. Even then, the generation
time makes it harder to ensure consistency.

Likewise, web applications can still ensure consistency with data types re-
fined on change, but this will require not confirming the write before it has
propagated to those data types. Generally, as is the case in Event Store, some
time delay in propagation (and thereby eventual consistency) is accepted in
these cases [69].

6.2.3 Taxonomy
The taxonomy introduced in the previous sections can be summarized as follows.
Data in web application can be described by its rawness, which is the inverse of
its refinement. Data enters the system as raw data, and its refinement can be
explained theoretically as passing through refinement functions, each function
outputting a more refined type of data. The most refined data in a web appli-
cation is responses. Raw and refined data, as well as responses, may or may not
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be persisted in the application. All web applications have these types of data,
and transient data is that which exists but is not persisted in an application.
Data types refinement can be triggered at various times: on request, on request
with caching, on change, at intervals, or pre-requested.

This taxonomy allows us to draw parallels between web applications and
database-related research such as that on materialized views and view mainte-
nance, as persisted refined data behaves like materialized views. It also provides
a novel perspective for exploring how concrete web application architectures be-
have, and which performance tradeoffs they make.

6.3 Approach to evaluation of the taxonomy
In order to answer research question RQ5, we performed a separate coding of
the interview transcriptions from the study presented in chapter 3.

RQ5 Which types of data is persisted in web applications, and what triggers
its generation?

The coding was according to a coding legend mapping the taxonomy pre-
sented in section 6.2 to codes, investigating the data types, their generation
triggers, and their persistence location in the interview data gathered through
the interviews presented in chapter 3. The coding legend can be found in ap-
pendix C.2.

It is relevant to note that the study did not explicitly concern data types in
the applications under study, but concerned instead architecturally significant
changes. We are therefore not expecting to see exhaustive results, but rather an
indication of those uses of specific data types that are architecturally significant.

6.4 Relevant results
We noted the generation triggers and persistence location (if any) of each data
type interviewees mentioned in the interviews about their architectures’ evolu-
tions. Table 6.1 shows an enumeration (first column) of the types of data we
encountered (second column) as well as how many of the cases we encountered
them in (third column). Note that events and request data have no genera-
tion time listed as events are raw data, and therefore are not generated by the
system.

We generally see that the most common case (6) are the data types found in a
simple MVC web application: request data is transient (q.1), events are transient
(e.1), refined data is persisted on change (r.3), and responses are transient and
generated on request (s.1).

Two cases report or discuss a future of storing events in a database, which
gives the ability to reconstruct the aggregates in question at a later time. Two
cases had caching of refined data in the memory of an application, and one
even cached the data on the client (in the browser), relying on the client to
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# Data type
Number
of cases

q.1 Request data, transient 6
e.1 Events, transient 6
e.2 Events stored in database 2
r.1 Refined data, cached in application in-memory cache 2
r.2 Refined data cached in client 1
r.3 Refined data generated on change, persisted 6
r.4 Further refined data generated on change, persisted 2
r.5 Refined data generated at intervals, persisted 1
r.6 Refined data pre-requested, persisted 1
s.1 Responses generated on request, transient 6
s.2 Responses cached in cache-specific storage 1

Table 6.1: The data types observed, their generation triggers, and persistence
location, found in the investigated architectures.

send the data back to the application for it to be used. The data in question
was encrypted, such that the server could verify its integrity, allowing for faster
processing of the client.

Two cases used second-level refinements, generated on change to lower-level
refined data. These uses are similar to the cases of second-level refined data
generated at intervals (1) and those of pre-requested second-level refined data
(1). All of these approaches provide more refined values, closer to how they are
going to be used in the future, reducing future generation time.

A single case reported caching of responses, by using a reverse proxy cache,
which was the only case with non-transient responses.

6.5 Discussion
In order to further investigate which types of data are persisted in an application,
we can compare the number of cases where request data, events, refined data
and responses were persisted and those in which they appeared in transient
forms. Table 6.2 shows an overview of the locations the different types were
persisted in

Transient
Persisted
in database

Persisted
in application

Persisted
in cache store

Persisted
on client

Request data 6 0 0 0 0
Events 6 2 0 0 0
Refined data 0 6 2 0 1
Responses 6 0 0 1 0

Table 6.2: Persistence location by data type
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While the pattern reported above as the most common does indeed shine
through again, we can also note something else. While events are persisted in
some cases (2) and a single case mentioned persisting responses, we find no cases
in which request data was persisted. (We also see that refined data was never
mentioned as transient, although it likely also appeared in this format in all
applications—but it was not thought architecturally significant by interviewees
and therefore not mentioned.) The overview shows that there is some spread in
where data is persisted, but most storage locations are limited to a few types of
data.

Figure 6.3 shows an overview of data types and the data generation triggers
reported for them. We see some spread on the types of generation triggers
for refined data, but very little for responses. That is, responses are usually
generated on request, and at most cached. Caching is the most common type
of modification to the default MVC web application generation behavior.

On request Cached On change At intervals Pre-requested
Refined data 0 3 6 1 1
Responses 6 1 0 0 0

Table 6.3: Data generation triggers by data type

The taxonomy provides a new lens through which we can view data in web
applications and helps us pose some questions: could we find benefits in per-
sisting more types of data (i.e. request data, events or responses), persisting
them in a different location, or in triggering the generation of data types in a
different manner? This leads us again to the concept of response generation
strategies, and how such strategies may be formulated and evaluated, which, as
stated earlier, is left for future work.

6.6 Validity and reliability
As the results and discussion in this chapter are based on the study presented
in chapter 3, the validity and reliability considerations presented in section 3.4
apply to these results, too.

6.6.1 Reliability
The reliability of the method applied is considered fairly high, as it concerns
primarily the coding of data types, generation triggers, and persistence locations
of data mentioned in the interviews. The analysis applied consisted only of
counting occurrences.

6.6.2 Validity
We consider the same validity measures as presented in section 4.4.2. The
coding of the interviews was done using a legend corresponding exactly to the
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taxonomy we wish to evaluate, which supports face validity. Whether or not
the taxonomy supports its intended purpose is the subject of evaluation: our
results are positive, that it was possible to categorize data in web applications
according to it. We found that the results matched with what we would expect
to find in MVC web applications, which further supports face validity.

The results presented in this chapter are mainly of academic character, and
have little impact outside of academia, other than sketching a variety of op-
tions for web application developers. Further research into and formalization
of the concepts of refinement functions and response generation strategies may
prove to yield more useful results, as they would inform concrete design of web
applications. The social validity of the current results is poor.

The taxonomy is new and experimental, and has not been applied to in-
terview data from interviews concerning the subject matter of the taxonomy.
As such, we have no reason to believe that the taxonomy in its current form
is exhaustive, and it may be expanded in the future, following further studies.
The content validity of the method is poor.

There is no prior research applying this or similar taxonomies, and thus we
cannot evaluate the support of existing research.

6.7 Summary of findings
We presented an argument that it is infeasible to build strongly consistent web
applications that scale to any significant number of clients.

We introduced a taxonomy of data in web applications, which allows for par-
allels to be drawn between web applications and database research in material-
ized views and view maintenance; and we proposed further work into refinement
functions and response generation strategies as theoretical constructs that may
inform the way we build web applications.

We applied the taxonomy, and found decent support for its use (albeit limited
validity due to the mismatch in direction of interviews with the taxonomy), as
well as showing the existence of some different approaches to both data type
persistence and data generation triggers. Ultimately, this existence leads us to
desire further work in applying and evaluating more approaches outside of those
employed in simple MVC web applications.
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Chapter 7

Conclusion

In this thesis, we set out to investigate and challenge perspectives of web applica-
tions. We explored the breadth and evolution of web application architectures,
and argued that no change classification framework can be seen as ultimate, but
should rather be promoted on merits of the cases where it provides useful insight.
We presented a new perspective on architectural change based on architecture
evolution paths, and a method for investigating concrete architectures through
this perspective, documenting common narratives in six architectures’ evolution
paths. We also explored data as it exists in web applications, and found lim-
ited experimentation with persistence and generation triggers of data. Finally,
we found that architecture-centric tools were in little use in the companies we
studied, which is supported by previous research in the field.

We identified two new patterns of organizing web applications servers, par-
allel and chained web applications (in which two web applications use the same
data store, and in which one web application uses another as data store, respec-
tively), and several hybrid architectures, somewhere between traditional web
application architectures and more complex orthogonal architectures, as well as
long-lived efforts to slowly replace parts of the system, with an acceptance of
added complexity at times.

Taken together with the variety of data generation methods (caching data on
clients, generating refined data on change, storing events, storing refined data,
caching responses), this paints a picture of an extremely complex set of practices,
and the lack of use of architecture-centric tools shows that there is little help to
find for practicioners, in the forms of useful perspectives or guidance.

With the inherently limited perspective we found in any change classifica-
tion framework (which may be generalized to any classification framework), the
complexity of web application development is decidedly poorly supported. We
provided some new perspectives that may be found useful in the understanding
of web applications, but nothing that has yet been shown to improve practi-
cioners’ understanding of the work they are performing.

As we explored the properties of web applications, we argued that they are
inherently weakly consistent systems. This trait seems to be previously unrec-
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ognized in web application research and practice, and may lead to improvements
in web application design. Rather than doing nothing about weak consistency,
we can now move towards building web applications with consistency properties
more well-considered, such as considering different models for achieving even-
tual consistency between client and server than the one currently employed by
most web applications.

We found parallels between database research and the research and practice
of development of web applications, in particular that much of web applica-
tion functionality is akin to manual view maintenance or view construction.
By looking at web applications through this lens, we might in the future be
able to describe web application functionality in a way that allows for seman-
tic view maintenance, changing between maintenance strategies automatically,
depending on load and constraints on the different data in the application.

The approach we used to identify architecture evolution paths was novel
and experimental, and observations for future improvements were part of the
results we reported. Additionally, the sample size of the study was very limited
(n = 6) and the sample was poorly geographically distributed, so the results are
poorly generalizable. The data we have presented provide an indication, but by
no means conclusive evidence of any common patterns; rather we have strove
to provide novel perspectives on web applications, leading to new directions in
research.

We have taken the first steps down this path, introducing informally the no-
tion of refinement functions—functions that aggregate one or more types of data
into a more refined type of data—and the term response generation strategies—
the consideration of how, when and where all the underlying refinement layers of
a response are generated and persisted. Future work would involve further for-
malizations of these two terms, as well as exploration of how they may be used
to inform web application design, both in theory and in practice. A framework
for constructing and comparing response generation strategies and their impact
on performance and consistency in theory would be an obvious next step, and
practical applications of the ideas of refinement functions nad response genera-
tion strategies would follow that.
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Appendix A

Company email

The following email was sent to potential interviewees in order to inquire about
their participation in the study. Both an English and Danish language email was
prepared. All the participants that responded were contacted using the Danish
language email, as their primary communication on their company website was
in Danish.

A.1 English version
Subject: Research project on web applications

Dear {{company}},

I am writing to hear if you might be interested in participating in an re-
search project at the IT University of Copenhagen. We are investigating
how web application architectures change over time when responding to
changing requirements.

We would like to interview one of your employees for around an hour,
talking about your web platform, how it has changed over time, and how
you see it changing in the future.

The employee should preferably (though not necessarily) have worked on
the platform since its inception, as we will be investigating decisions made
that changed the architecture of the platform.

Specifically, we are investigating layered web applications (such as, for
example, applications originally built with an MVC framework such as
ASP.NET MVC, Ruby on Rails, or similar). We think your platform might
fit the bill.
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In the interview, we are going to have a conversation about the platform.
The conversation will be recorded, and paper and pen are also available,
so the employee can make illustrations, which will also be recorded. The
interview recordings will not be shared with people not involved in the re-
search. The results will be presented only in anonymized form.

I would appreciate any help getting in touch with a relevant employee
at your company. Let me know if you have any questions or any need for
clarification.

Best,

Niels Roesen Abildgaard
MSc Student at the IT University of Copenhagen
nroe@itu.dk | 40 92 06 41

A.2 Danish version
Subject: Forskningsprojekt om webapplikationer

Kære {{firma}},

Jeg skriver til jer, for at høre om I potentielt ville være interesserede i
at deltage i et forskningsprojekt fra IT-Universitetet i København. Vi un-
dersøger hvordan web applikationers arkitektur ændrer sig over tid efter-
hånden som krav til dem ændrer sig.

Vi vil meget gerne interviewe en af jeres medarbejdere i omkring en time,
hvor vi vil snakke om jeres webplatform, hvordan den har ændret sig over
tid, og hvordan I forudser at den vil ændre sig i fremtiden.

Medarbejderen bør helst (men ikke nødvendigvis) have arbejdet med plat-
formen siden dens oprettelse, da vi gerne vil forstå de beslutninger der
første til ændringer i platformens arkitektur.

Mere specifikt undersøger vi layered web applications (som for eksempel
applikationer bygget med MVC frameworks som ASP.NET MVC, Ruby on
Rails, eller lignende). Vi tror jeres platform falder i denne kategori.

Interviewet tager form at en samtale om platformen. Samtalen bliver op-
taget, og papir og skriveredskaber stilles til rådighed, så medarbejderen
kan illustrere mens vi taler. Illustrationerne bliver også gemt. Interviewop-
tagelserne vil ikke blive delt med folk udenfor forskningsprojektet, og re-
sultaterne præsenteres i anonymiseret form.
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Jeg ville sætte stor pris på at blive sat i kontakt med en relevant medarbe-
jder. Sig til hvis I har behov for uddybning af noget af det jeg har skrevet,
eller har spørgsmål.

Bedste hilsner,

Niels Roesen Abildgaard
MSc-studerende ved IT-Universitetet i København
nroe@itu.dk | 40 92 06 41
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Appendix B

Interview protocol

The interviews for this study will be semi-structured interviews touching on a
number of themes. They are expected to last around an hour. The interviews are
recorded, and notes and illustrations made during the interviews are captured
by camera. The interviewer supplies materials for making illustrations.

Interviewees are asked to bring architectural artifacts in their possession to
the interview.

In the beginning of the interview, the following script is read to interviewees,
informing them of the procedure. They will be asked for explicit consent to the
conditions of these interview conditions. The text was also made available to
the company when first establishing contact:

This interview is a part of a study exploring changes to web ap-
plication architectures. We are going to have a conversation about
your product, and the conversation will be recorded. Paper and pen
are also available, so you can make illustrations, which will also be
recorded. The interview recordings will not be shared with people
not involved in the research. The results will be presented only in
anonymized form.

Or, if interviews or contact are conducted in Danish, the following script will
be used:

Dette interview er en del af et studie af ændringer i web applikations-
arkitekturer. Vi kommer til at have en samtale om jeres produkt, og
samtalen bliver optaget. Der er også papir og kuglepen til rådighed
til at lave illustrationer, og disse bliver også bevaret. Det materiale
vi får fra interviewet bliver ikke delt med folk, der ikke er involverede
i forskningsprojektet, og resultaterne bliver præsenteret i anonymis-
eret form.

During the interview, the following themes will be discussed, in prioritized
and chronological order (meaning that if time runs out during an interview, the
first themes will have been covered, but some later ones may not have been):
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• The product’s profile (when development started, date of first launch, the
team then, the team now, number of users, interaction pattern of users)

• The interviewee’s profile (their role in the company, their role while work-
ing on the product, their interaction with software architecture as a tool,
how software architecture is used in the company)

• The product today (the significant components of architecture)

• The initial architecture of the product (the considerations when starting
to develop the product, the significant components)

• Changes along the way (gradual changes, major changes, the causes of
said changes, the effects of the changes to the architecture, and potential
evaluations of the changes)
The goal is to get an idea of what changes happened, as well as the order
they happened in.
If the interviewee indicates knowledge of early changes, these should be the
focus. Otherwise, focus should be on the changes that are fresh in memory
(recent, impactful).

• The interviewee’s approach to scaling applications today (how would they
go about responding to changing scalability requirements in their product
as it first looked, if they were to do it today)
To avoid leading questions, this could be investigated by asking the inter-
viewee to evaluate the change, or if they received feedback on the change.

The interviews are expected to last an hour, depending on the availabilities
of the employees in the companies.

Considerations regarding the interview protocol

After the first interview it became clear that asking the interviewee to describe their
position and work in the company automatically led to technical descriptions of the
product. To ensure getting basic information about the product, the order of the
first two topics was swapped, such that the product profile is the first topic.

93



Appendix C

Legend for coding interviews

C.1 Architecture, patterns, and change
The following legend was used for coding of architectural direction and tool use,
architecture patterns, and reasons and manner of architectural changes found
in the interview transcripts.

During the coding, it was noted on the interview transcript every time an
interviewee mentioned one of the terms or concepts in the coding legend. This
allowed for a later lookup of e.g. what architectural practices a company had,
which patterns were in use in their architecture, or which types of data they had
in use (with each type characterized by type, generation trigger and persistence
location).

T Architecture as a tool in the organization

1. Used informally, verbally

2. Used informally, verbally, with diagrams for external communication

3. Used informally, verbally and diagrams

4. Not used

AG Goals and direction for architecture

1. By target architecture

2. By principles

3. No long-term direction

AP Patterns in architectures

1. Bounded contexts

2. Strangler pattern: long-lived, slow replacement.

3. Layered web application
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(a) Shared-Nothing, as part of a larger system
(b) Shared-Nothing, as the only part of the system
(c) Stateful, as part of a larger system
(d) Stateful, as the only part of the system

4. Microservices

(a) True microservices
(b) False microservices: large feature set
(c) False microservices: not individual storage
(d) Machine learning as microservice

5. Infrastructure or platform as a service

6. Parallel layered web applications

7. Chained layered web applications

8. Shared dependencies across services (distributed monolith)

9. Services in different programming languages/on different platforms

10. Serverless functions

11. Monolith/layered web application1

12. Communication via message bus

13. Shared database (multi-tenant) (across services)

14. CQRS

15. Strangler completed

16. Replication of components

(a) Load balancing
(b) Geographic distribution
(c) Failsafe
(d) Other

17. Static site/JAMstack

ACR Architectural change: reasons for change

1. Migrating when infrastructure automation is ready

2. New feature requirement

3. Poor performance under current conditions

4. Need for future scalability

5. Developer experience improvement

6. Reduce infrastructure costs

7. Unknown
1This item, AP.11, was originally used in coding, but later merged with AP.3, and not

used in the final coding. It is included here to keep the enumeration intact.
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8. Industry popularity/”the right solution”

9. Eliminate error sources

10. Escape vendor lock-in

11. Adhere to bounding context

ACM Architectural change: manner of change

1. Extraction from existing part

(a) Inside bounded context borders
(b) Across bounded context borders
(c) Without use of bounded contexts
(d) Extract database to separate server
(e) Establishing bounded contexts

2. New part from scratch

3. Removed part

4. Integration of parts into a single part.

5. Rewrote/replaced existing part

6. Moved to infrastructure as a service

7. Introduce replication of component

(a) Load balancing
(b) Other

8. Rewrote entire architecture

9. Change in communication

(a) towards request/response
(b) towards message-driven

10. Virtual/conceptual/theoretical architectural change

C.2 Data types in web applications
The coding legend for identifying data types in web applications overlaps the
taxonomy presented in 6. During the coding, data types that were not originally
present in the taxonomy, but observed in the interview transcripts, were added
to the legend.

DT Data type

1. Request data

2. Raw data (event)

3. Aggregated data

4. Response data
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DG Data generation time

1. On request for it

2. Cached

3. On change

4. At intervals

5. When generation is requested

DL Data location

1. In application

2. In main database

3. In other database2

4. In cache-specific storage

5. On client (in browser/app)

2This category, DL.3, was originally coded for, but was merged with DL.2 (which was
relabelled "In database"), as the distinction became impossible to make in systems with
several databases, and no primary database.
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Appendix D

Architecture evolution paths

This appendix contains the generic/abstracted version of the architecture evo-
lution paths we identified from the interviews we conducted. Each case is listed
in its own section, and the steps are listed in chronological order.

If there are significant notes about time (e.g. we know which year a step
happened in, or the step was detached in time) it is underlined and noted first in
the step. After that, in italics, is the description of what happened in the step,
then, in bold, the codings relating to the architectural change that occurred,
then a description of the full architecture at the time in question, and finally,
in bold, the architectural patterns coded for that are in use in the architecture
after the step.

In the case of more complex steps, where several smaller changes happened
at the same time, these inner steps are listed in a nested list, with a description
of the change performed in the step in italics and the relevant codings in bold.

For detached steps, we cannot know how the full architecture looks after
their application, as we do not know when this change happened, so it has been
left as a question mark.

D.1 Case a.
1. First version

Unreplicated monolith layered web application. Single db. One server.
AP.3.b

2. Rewrite
ACM.8 ACR.7
Unreplicated monolith layered web application. Single db. One server.
AP.3.b

3. Extract db to separate machine
ACM.1.d ACR.7 C-4
Unreplicated monolith layered web application. Single db. Separate db
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server.
AP.3.b

4. Add new web application with new functionality, depending on same data-
model
ACM.2 ACR.2
Unreplicated parallel layered web applications. Single db. Separate db
server. Shared dependencies across services.
AP.3.a AP.6 AP.8 AP.13

5. 2015

(a) Move infrastructure to cloud
ACR.3 ACM.6

(b) Introduce load balancing
ACR.3 ACM.7.a

Load-balanced parallel layered web applications hosted in cloud. Single
db. Shared dependencies across services.
AP.3.a AP.5 AP.6 AP.8 AP.13

6. Introduce scheduled jobs
ACM.2 ACR.5 C-4
Load-balanced parallel layered web applications hosted in cloud. Single
db. Shared dependencies across services. Scheduled jobs.
AP.3.a AP.5 AP.6 AP.8 AP.13

7. Introduce message bus
ACM.2 ACM.9.b ACR.7
Load-balanced parallel layered web applications hosted in cloud. Single
db. Shared dependencies across services. Scheduled jobs.
AP.3.a AP.5 AP.6 AP.8 AP.12 AP.13

8. 2017
Start strangler replacing message bus
ACM.5 ACR.9 C-4
Load-balanced parallel layered web applications hosted in cloud. Single
db. Shared dependencies across services. Scheduled jobs. Strangling old
message bus.
AP.2 AP.3.a AP.5 AP.6 AP.8 AP.12 AP.13

9. Introduce microservices
ACR.2 ACR.5 ACR.8 ACM.2 ACM.7.a
Load-balanced parallel layered web applications hosted in cloud. Single
db. Shared dependencies across services. Scheduled jobs. Strangling old
message bus. Microservices.
AP.2 AP.3.a AP.4.a AP.4.d AP.5 AP.6 AP.8 AP.9 AP.12 AP.13
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10. Not placed in time
Introduced bounded contexts
ACM.10 ACR.7
?
AP.1

11. Not placed in time
Introduced materialized views, CQRS
ACM.1.e ACR.3
?
AP.14

D.2 Case b.
1. 2015

First version
Unreplicated monolith layered web application; landing page as separate
service, hosted in cloud. 8 databases.
AP.3.a AP.5

2. 2017
Merge databases
ACM.4 ACR.6 ACR.5
Unreplicated monolith layered web application; landing page as separate
service, hosted in cloud. Single database.
AP.3.a AP.5

3. Introduced microservice
ACM.2 ACR.2
Unreplicated monolith layered web application; landing page as separate
service, hosted in cloud. Single database. Microservices.
AP.3.a AP.4.a AP.4.d AP.5

4. Future

(a) Rewrite a component
ACM.5 ACR.4

(b) Move component to managed infrastructure
ACM.6 ACR.4

Unreplicated monolith layered web application; landing page as separate
service, hosted in cloud. Single database. Microservices. Parts have
managed infrastructure.
AP.3.a AP.4.a AP.4.d AP.5

5. Future
Rewrite a component
ACM.5 ACR.8

100



Unreplicated monolith layered web application; landing page as separate
service, hosted in cloud. Single database. Microservices. Parts have
managed infrastructure.
AP.3.a AP.4.a AP.4.d AP.5

6. Future
Move database to managed infrastructure
ACM.6 ACR.7
Unreplicated monolith layered web application; landing page as separate
service, hosted in cloud. Single database. Microservices. Parts have
managed infrastructure.
AP.3.a AP.4.a AP.4.d AP.5

7. Future
Merge two web-facing components
ACM.4 ACR.8
Unreplicated monolith layered web application hosted in cloud. Single
database. Microservices. Parts have managed infrastructure.
AP.3.a AP.4.a AP.4.d AP.5

D.3 Case c.
1. 2004

First version
Unreplicated monolith layered web application (not shared-nothing). Sin-
gle db.
AP.3.d

2. 2008
Rewrite
ACM.8 ACR.7
Unreplicated monolith layered web application (not shared-nothing). Sin-
gle db.
AP.3.d

3. 2009
Introduce scheduled jobs
ACM.2 ACR.2
Unreplicated monolith layered web application (not shared-nothing). Sin-
gle db. Scheduled jobs.
AP.3.d

4. 2012
Extract service from a scheduled job
ACM.1.d ACR.3
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Unreplicated monolith layered web application (not shared-nothing). Sin-
gle db. Scheduled jobs. Microservices.
AP.3.d AP.4.c

5. 2012-2013
Add mobile apps (new clients)
ACM.2 ACR.2
Unreplicated monolith layered web application (not shared-nothing). Sin-
gle db. Scheduled jobs. Microservices. App clients.
AP.3.d AP.4.c

6. 2014
Add new web application strangling old service, depending on same database,
some shared datamodels
ACM.2 ACR.2
Unreplicated parallel layered web application (one shared-nothing), one
service strangling the other. Single db. Scheduled jobs. Microservices.
App clients. Shared dependencies across services.
AP.2 AP.3.a AP.3.c AP.4.c AP.6 AP.8 AP.13

7. Introduce load balancing for one of the layered web applications
ACM.2 ACM.7.a ACR.3 ACR.4
Partially load-balanced parallel layered web application (one shared noth-
ing), one service strangling the other. Single db. Scheduled jobs. Mi-
croservices. App clients. Shared dependencies across services.
AP.2 AP.3.a AP.3.c AP.4.c AP.6 AP.8 AP.13 AP.16.a

8. (a) Introduce message bus
ACM.2 ACM.9.b ACR.3 ACR.4

(b) Extract services from scheduled jobs
ACM.1 ACR.3 ACR.4

(c) Move some services to cloud
ACM.6 ACR.3 ACR.4

Partially load-balanced parallel layered web application, one service stran-
gling the other. Single db. Scheduled jobs. Microservices, partially in
managed hosting. Message bus. App clients. Shared dependencies across
services.
AP.2 AP.3.a AP.3.c AP.4.c AP.5 AP.6 AP.8 AP.12 AP.13 AP.16.a

9. Geographically distribute database (shard)
ACR.3 ACR.6 ACM.1.b ACM.7.b
Partially load-balanced parallel layered web application, one service stran-
gling the other. Geographically distributed db. Scheduled jobs. Microser-
vices, partially in managed hosting. Message bus. App clients. Shared
dependencies across services.
AP.2 AP.3.a AP.3.c AP.4.c AP.5 AP.6 AP.8 AP.12 AP.13 AP.16.a
AP.16.b
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10. 2016
Introduce load-balancing for rest of the layered web applications
ACM.2 ACM.7.a ACR.3
Load-balanced parallel layered web application, one service strangling the
other. Geographically distributed db. Scheduled jobs. Microservices, par-
tially in managed hosting. Message bus. App clients. Shared dependencies
across services.
AP.2 AP.3.a AP.4.c AP.5 AP.6 AP.8 AP.12 AP.13 AP.16.a AP.16.b

11. 2017
Introducing new style of microservices
ACM.2 ACR.2 ACR.3
Load-balanced parallel layered web application, one service strangling the
other. Geographically distributed db. Scheduled jobs. Microservices, par-
tially in managed hosting. Message bus. App clients. Shared dependencies
across services.
AP.2 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.8 AP.12 AP.13 AP.16.a
AP.16.b

12. Future
Extract service from layered web application
ACM.1.a ACR.3 ACR.9
Load-balanced parallel layered web application, one service strangling the
other. Geographically distributed db. Scheduled jobs. Microservices, par-
tially in managed hosting. Message bus. App clients. Shared dependencies
across services.
AP.2 AP.3.a AP.4.a AP.4.b AP.4.c AP.5 AP.6 AP.8 AP.12 AP.13
AP.16.a AP.16.b

13. Future
Move databases to cloud
ACM.6 ACR.3
Load-balanced parallel layered web application, one service strangling the
other. Geographically distributed db in managed hosting. Scheduled jobs.
Microservices, partially in managed hosting. Message bus. App clients.
Shared dependencies across services.
AP.2 AP.3.a AP.4.a AP.4.b AP.4.c AP.5 AP.6 AP.8 AP.12 AP.13
AP.16.a AP.16.b

14. Not placed in time
Introduced bounded contexts
ACR.8 ACR.5 ACM.1.e
?
AP.1
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D.4 Case d.
1. First version

Unreplicated monolith layered web application. Single db.
AP.3.b

2. (a) Start strangler rewrite of entire application
ACM.5 ACR.2 ACR.5 ACR.9

(b) Introduce work queues
ACM.2 ACR.2 ACR.5

Unreplicated monolith layered web application. Single db. Strangling old
system. Work queues.
AP.2 AP.3.b AP.14

3. Finished strangler rewriting application
ACM.5 ACR.2 ACR.5 ACR.9
Unreplicated monolith layered web application. Single db. Work queues.
AP.3.b AP.14 AP.15

4. Move work queues to different data store
ACM.2 ACR.3
Unreplicated monolith layered web application. Work queues.
AP.3.b AP.14 AP.15

D.5 Case e.
1. 2013

First version
Load-balanced monolith layered web application. Separate db with backup.
Cloud hosted.
AP.3.b AP.5 AP.16.a AP.16.c

2. 2016
(a) Rewrite

ACR.3 ACR.5 ACR.10 ACM.8
(b) Move to different cloud

ACR.3 ACR.5 ACR.10 ACM.6

Load-balanced chained layered web applications in managed hosting. Dbs
in managed hosting. Cloud hosted. Static site.
AP.3.a AP.5 AP.7 AP.9 AP.16.a AP.17

3. Add new web application with new functionality
ACR.2 ACM.2
Load-balanced parallel and chained layered web applications in managed
hosting. Dbs in managed hosting. Cloud hosted. Static site.
AP.3.a AP.5 AP.6 AP.7 AP.9 AP.16.a AP.17
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4. Introducing serverless functions
ACR.2 ACM.2
Load-balanced parallel and chained layered web applications in managed
hosting. Dbs in managed hosting. Cloud hosted. Static site. Serverless
functions.
AP.3.a AP.5 AP.6 AP.7 AP.9 AP.10 AP.16.a AP.17

5. Introducing a microservice
ACM.2 ACR.2
Load-balanced parallel and chained layered web applications in managed
hosting. Dbs in managed hosting. Cloud hosted. Static site. Microser-
vice. Serverless functions.
AP.3.a AP.4.a AP.4.d AP.5 AP.6 AP.7 AP.9 AP.10 AP.16.a AP.17

6. Introducing message queue
ACM.9.b ACR.7
Load-balanced parallel and chained layered web applications in managed
hosting. Dbs in managed hosting. Cloud hosted. Static site. Microser-
vice. Message queue. Serverless functions.
AP.3.a AP.4.a AP.4.d AP.5 AP.6 AP.7 AP.9 AP.10 AP.12 AP.16.a
AP.17

7. Future
Geographic distribution of architecture
ACM.7.b ACR.3
Geographically distributed, load-balanced parallel and chained layered
web applications in managed hosting. Dbs in managed hosting. Cloud
hosted. Static site. Microservice. Message queue. Serverless functions.
AP.3.a AP.4.a AP.4.d AP.5 AP.6 AP.7 AP.9 AP.10 AP.12 AP.16.a
AP.16.b AP.17

D.6 Case f.
1. First version

Load-balanced chained layered web applications. Single, shared db, and
data model. Scheduled jobs. Cloud hosted.
AP.3.a AP.5 AP.7 AP.8 AP.13 AP.16.a

2. Caching layer for some database data
ACR.4 ACM.2
Load-balanced chained layered web applications. Single, shared db, and
data model. Scheduled jobs. Cloud hosted.
AP.3.a AP.5 AP.7 AP.8 AP.13 AP.16.a

3. New web application with new functionality
ACR.2 ACM.2
Load-balanced parallel and chained layered web applications. Single, shared
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db, and data model. Scheduled jobs. Cloud hosted.
AP.3.a AP.5 AP.6 AP.7 AP.8 AP.13 AP.16.a

4. 2012
Merge scheduled jobs functionality into web application
ACM.4 ACR.7
Load-balanced parallel and chained layered web applications. Single, shared
db, and data model. Cloud hosted.
AP.3.a AP.5 AP.6 AP.7 AP.8 AP.13 AP.16.a

5. Introducing scheduled jobs
ACM.2 ACR.2
Load-balanced parallel and chained layered web applications. Single, shared
db, and data model. Scheduled jobs. Cloud hosted.
AP.3.a AP.5 AP.6 AP.7 AP.8 AP.13 AP.16.a

6. 2013
Introducing new database for part of the system
ACM.2 ACR.3
Load-balanced parallel and chained layered web applications. Shared data
models. Two databases, shared. Scheduled jobs. Cloud hosted.
AP.3.a AP.5 AP.6 AP.7 AP.8 AP.13 AP.16.a

7. 2013
Start strangler rewrite of one layered web application
ACM.5 ACR.7
Load-balanced parallel and chained layered web applications. Strangling
one web application. Shared data models. Two databases, shared. Sched-
uled jobs. Cloud hosted.
AP.2 AP.3.a AP.5 AP.6 AP.7 AP.8 AP.13 AP.16.a

8. Introducing microservices
ACM.2 ACR.2
Load-balanced parallel and chained layered web applications. Strangling
one web application. Shared data models. Two databases, shared. Sched-
uled jobs. Microservices. Cloud hosted. Bounded contexts.
AP.1 AP.2 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.7 AP.8 AP.13
AP.16.a

9. 2016
Introduced serverless functions
ACM.2 ACR.1 ACR.2 ACR.9
Load-balanced parallel and chained layered web applications. Strangling
one web application. Shared data models. Two databases, shared. Sched-
uled jobs. Microservices. Mixed langauge serverless functions. Cloud
hosted. Bounded contexts.
AP.1 AP.2 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.7 AP.8 AP.9
AP.10 AP.13 AP.16.a
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10. 2017
Finished strangler rewrite of one layered web application
ACM.5 ACR.7
Load-balanced parallel and chained layered web applications. Shared data
models. Two databases, shared. Scheduled jobs. Microservices. Mixed
langauge serverless functions. Cloud hosted. Bounded contexts.
AP.1 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.7 AP.8 AP.9 AP.10
AP.13 AP.15 AP.16.a

11. Future
Migrate one database to another technology
ACM.5 ACR.5 ACR.8
Load-balanced parallel and chained layered web applications. Shared data
models. Two databases, shared. Scheduled jobs. Microservices. Mixed
langauge serverless functions. Cloud hosted. Bounded contexts.
AP.1 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.7 AP.8 AP.9 AP.10
AP.13 AP.15 AP.16.a

12. Future
Move responsibility for something to a better fitting bounding context, into
new microservice
ACM.1.b ACR.11
Load-balanced parallel and chained layered web applications. Shared data
models. Two databases, shared. Scheduled jobs. Microservices. Mixed
langauge serverless functions. Cloud hosted. Bounded contexts.
AP.1 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.7 AP.8 AP.9 AP.10
AP.13 AP.15 AP.16.a

13. Future
Migrate services to more managed hosting
ACM.6 ACR.4 ACR.5
Load-balanced parallel and chained layered web applications in managed
hosting. Shared data models. Two databases, shared. Scheduled jobs. Mi-
croservices. Mixed langauge serverless functions. Cloud hosted. Boudned
contexts.
AP.1 AP.3.a AP.4.a AP.4.c AP.5 AP.6 AP.7 AP.8 AP.9 AP.10
AP.13 AP.15 AP.16.a

14. Not placed in time
Introduced bounded contexts
ACM.10 ACR.7
?
AP.1

15. Not placed in time
Added message queue
ACM.2 ACR.7
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?
AP.12

16. Not placed in time
Extracted service to remove shared dependency in applications/to adhere
to bounded contexts
ACM.1.b ACR.5
?

17. Not placed in time
Distributed layered web applications geographically, and as a failsafe
ACM.7.b ACR.7
?
AP.16.b AP.16.c
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Appendix E

Narrative finder program

The following program was used to find common narratives in architecture evo-
lution paths. First, the architecture evolution paths were represented in a simple
Javascript Object-format, where each step noted equal and similar steps. An
example of this can be seen in listing E.1.

We load up the paths and use our program to construct a similarity table.
We prime the paths, which in this case means representing each step in each path
by the name of the alphanumerically first step that it overlaps with (either equal
or similar). This is then used to find the different types of common narratives,
which are saved as a JSON-file. The main program can be seen in listing E.2.
The code for building a similarity table is in listing E.4, the code for priming
paths is in listing E.5, the code for finding sections is in listing E.6, stories in
listing E.7, and group precedences in listing E.8

1 module.exports = [
2 { id: 1 },
3 { id: 2 },
4 { id: 3 },
5 { id: 4 },
6 { id: 5 },
7 { id: 6 },
8 { id: 7 },
9 { id: 8 },

10 { id: 9 }
11 ];

Listing E.1: a.js — an example of a path encoded as Javascript Objects.

1 const paths = require("./paths");
2 const narrativeFinder = require("./index");
3 const fs = require("fs");
4
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5 //Setup
6 let similarityTable = narrativeFinder.buildSimilarityTable(paths);
7 let equalPrimedPaths = narrativeFinder.primePaths(paths , similarityTable ,
8 "equal");
9 let similarPrimedPaths = narrativeFinder.primePaths(paths , similarityTable ,

10 "similar");
11

12 //Find sections
13 let equalSections = narrativeFinder.findSections(equalPrimedPaths);
14 let similarSections = narrativeFinder.findSections(similarPrimedPaths);
15

16 //Find stories
17 let equalStories = narrativeFinder.findStories(equalPrimedPaths);
18 let similarStories = narrativeFinder.findStories(similarPrimedPaths);
19

20 //Find group precedences
21 let equalGroupPrecedences = narrativeFinder
22 .findGroupPrecedences(equalPrimedPaths);
23 let similarGroupPrecedences = narrativeFinder
24 .findGroupPrecedences(similarPrimedPaths);
25

26 //Write result to file
27 fs.writeFile("narrative -finder -result.json", JSON.stringify ({
28 sections: {
29 equal: equalSections ,
30 similar: similarSections
31 },
32 stories: {
33 equal: equalStories ,
34 similar: similarStories
35 },
36 groupPrecedences: {
37 equal: equalGroupPrecedences ,
38 similar: similarGroupPrecedences
39 }
40 }), (error) => {
41 if(error) {
42 return console.error("Failed␣to␣save␣result", error);
43 }
44 console.log("Saved␣result.");
45 });

Listing E.2: run.js — the main program that finds narratives in the given data

1 module.exports = {
2 buildSimilarityTable: require("./src/buildSimilarityTable"),
3 primePaths: require("./src/primePaths"),
4 findSections: require("./src/findSections"),
5 findNarratives: require("./src/findNarratives"),
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6 findGroupPrecedences: require("./src/findGroupPrecedences")
7 };

Listing E.3: index.js — exposes the narrativeFinder object.

1 module.exports = buildSimilarityTable;
2

3 function buildSimilarityTable(paths) {
4 let result = {};
5

6 let pathNames = Object.keys(paths);
7

8 pathNames.forEach (( pathName) => {
9 paths[pathName ]. forEach ((step) => {

10 let fullStepName = ‘${pathName }.${step.name}‘;
11 result[fullStepName] = [];
12

13 pathNames.forEach (( otherPathName) => {
14 paths[otherPathName ]. forEach (( otherStep) => {
15 if(stepsAreSimilar(pathName , step , otherPathName ,
16 otherStep)) {
17 result[fullStepName ].push({
18 type: "similar",
19 step: ‘${otherPathName }.${otherStep.name}‘
20 });
21 }
22 if(stepsAreEqual(pathName , step , otherPathName ,
23 otherStep)) {
24 result[fullStepName ].push({
25 type: "equal",
26 step: ‘${otherPathName }.${otherStep.name}‘
27 });
28 }
29 });
30 });
31 });
32 });
33

34 let stepNames = Object.keys(result);
35

36 stepNames.forEach (( stepName) => {
37 result[stepName ]. forEach ((similarity , i1) => {
38 result[stepName ]. forEach (( otherSimilarity , i2) => {
39 if(i1 == i2) return;
40 ensureSimilarity(result , similarity , otherSimilarity);
41 });
42 });
43 });
44
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45 stepNames.forEach (( stepName) => {
46 let similarities = result[stepName ];
47

48 let similarPrime = findPrime(similarities , stepName);
49 let equalPrime = findPrime(
50 similarities.filter ((s) => s.type == "equal"),
51 stepName);
52

53 result[stepName] = { similarPrime , equalPrime , similarities };
54 });
55

56 return result;
57 }
58

59 function stepsAreSimilar(pathName , step , otherPathName , otherStep) {
60 if(step.similarTo == ‘${otherPathName }.${otherStep.name}‘) {
61 return true;
62 }
63 if(otherStep.similarTo == ‘${pathName }.${step.name}‘) {
64 return true;
65 }
66 if(pathName === otherPathName) {
67 if(step.similarTo == ‘~.${otherStep.name}‘) {
68 return true;
69 }
70 if(otherStep.similarTo == ‘~.${step.name}‘) {
71 return true;
72 }
73 }
74 return false;
75 }
76

77 function stepsAreEqual(pathName , step , otherPathName , otherStep) {
78 if(step.equalTo == ‘${otherPathName }.${otherStep.name}‘) {
79 return true;
80 }
81 if(otherStep.equalTo == ‘${pathName }.${step.name}‘) {
82 return true;
83 }
84 if(pathName === otherPathName) {
85 if(step.equalTo == ‘~.${otherStep.name}‘) {
86 return true;
87 }
88 if(otherStep.equalTo == ‘~.${step.name}‘) {
89 return true;
90 }
91 }
92 return false;
93 }
94
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95 function ensureSimilarity(result , similarity , otherSimilarity) {
96 let stepSimilarities = result[similarity.step];
97

98 let existingSimilarity = stepSimilarities.find(( stepSimilarity) =>
99 stepSimilarity.step == otherSimilarity.step);

100

101 if(existingSimilarity) {
102 if(similarity.type == "equal" && otherSimilarity.type == "equal") {
103 existingSimilarity.type = "equal";
104 }
105 return;
106 }
107

108 if(similarity.type == "equal" && otherSimilarity.type == "equal") {
109 stepSimilarities.push({ type: "equal", step: otherSimilarity.step });
110 return;
111 }
112 stepSimilarities.push({ type: "similar", step: otherSimilarity.step });
113 }
114

115 function findPrime(similarities , ownName) {
116 if(similarities.length == 0) {
117 return ownName;
118 }
119 return similarities
120 .map(( similarity) => similarity.step)
121 .concat ([ ownName ])
122 .sort()
123 .find (() => true);
124 }

Listing E.4: buildSimilarityTable.js — constructs a similarity table from paths

1 module.exports = primePaths;
2

3 function primePaths(paths , similarityTable , type) {
4 if(!type) {
5 type = "similar";
6 }
7 if(type != "similar" && type != "equal") {
8 throw new Error(‘Attempting to prime paths without a valid given
9 ’type’. Must be ’similar ’ or ’equal ’.‘);

10 }
11 let pathNames = Object.keys(paths);
12

13 let result = {};
14

15 pathNames.forEach (( pathName) => {
16 let path = paths[pathName ];
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17

18 let primedPath = path.map((step) =>
19 primeStep(pathName , step ,similarityTable , type));
20

21 result[pathName] = primedPath;
22 });
23

24 return result;
25 }
26

27 function primeStep(pathName , step , similarityTable , type) {
28 return similarityTable[‘${pathName }.${step.name}‘][‘${type}Prime ‘];
29 }

Listing E.5: primePaths.js — primes paths such that each step refers to the
alphanumerically first name of a step in its similarity cluster

1 module.exports = findSections;
2

3 function findSections(primedPaths) {
4 let pathNames = Object.keys(primedPaths);
5 let numPaths = pathNames.length;
6

7 let result = [];
8

9 pathNames.forEach ((pathName , currentPathIndex) => {
10 console.log(‘Finding sections in path ${currentPathIndex + 1}/${numPaths}‘);
11

12 let possibleSections = findAllPossibleSections(primedPaths[pathName ]);
13

14 console.log(‘ - Found ${possibleSections.length} possible sections ‘);
15

16 possibleSections.forEach (( possibleSection) => {
17 if(resultContainsSection(result , possibleSection)) {
18 return;
19 }
20

21 let sectionMatches = 1;
22

23 pathNames.forEach (( otherPathName , otherPathIndex) => {
24 if(otherPathIndex <= currentPathIndex) {
25 return;
26 }
27

28 let otherPath = primedPaths[otherPathName ];
29

30 if(pathContainsSection(otherPath , possibleSection)) {
31 sectionMatches ++;
32 }
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33 });
34

35 if(sectionMatches >= 2) {
36 let stepCommonalities = possibleSection
37 .map((step) => {
38 let occurrances = pathNames
39 .map(( pathName) => primedPaths

[pathName ]. includes(step))
40 .filter (( present) => present)
41 .length;
42 return sectionMatches / occurrances;
43 });
44

45 let stepCommonalitiesSorted = stepCommonalities.sort();
46

47 let commonalityHelp = stepCommonalities
48 .map(( stepCommonality) => {
49 return { stepCommonality , sum: 1 };
50 })
51 .reduce ((a, b) => {
52 return {
53 stepCommonality: a.stepCommonality +
54 b.stepCommonality ,
55 sum: a.sum + b.sum
56 };
57 }, { stepCommonality: 0, sum: 0 });
58

59 let commonalityAvg = commonalityHelp.stepCommonality / commonalityHelp.sum
;

60 commonalityAvg = commonalityAvg.toFixed (2);
61

62 let numCommonalities = stepCommonalities.length;
63 let commonalityMedian;
64 if(numCommonalities % 2 == 0) {
65 commonalityMedian = (stepCommonalitiesSorted[Math.floor((

numCommonalities - 1) / 2)] +
66 stepCommonalitiesSorted[Math.ceil((

numCommonalities - 1) / 2)] ) / 2;
67 }
68 else {
69 commonalityMedian = stepCommonalitiesSorted[numCommonalities / 2];
70 }
71 commonalityMedian = commonalityMedian.toFixed (2);
72

73 result.push({ section: possibleSection , weight: sectionMatches ,
commonalityAvg , commonalityMedian , stepCommonalities });

74 }
75 });
76 });
77

115



78 return result;
79 }
80

81 function findAllPossibleSections(path) {
82 let sections = [];
83

84 for(let i = 0; i < path.length; i++) {
85 let remainder = path.length - i;
86 for(let j = 2; j < remainder; j++) {
87 sections.push(path.slice(i, i + j));
88 }
89 }
90

91 return sections;
92 }
93

94 function resultContainsSection(result , section) {
95 return result.some((entry) => {
96 let existingSection = entry.section;
97 if(section.length != existingSection.length) {
98 return false;
99 }

100 if(section.some((step , stepIndex) => existingSection[stepIndex] != step)) {
101 return false;
102 }
103 return true;
104 });
105 }
106

107 function pathContainsSection(path , section) {
108 let firstStep = section [0];
109 let start = path.findIndex ((v) => v == firstStep);
110

111 if(start === -1) {
112 return false;
113 }
114

115 let allMatch = section.every (( expectedStep , expectedOffset) => path[start +
expectedOffset] == expectedStep);

116

117 if(allMatch) {
118 return true;
119 }
120

121 pathContainsSection(path.slice(start + 1), section);
122 }

Listing E.6: findSections.js
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1 module.exports = findStories;
2

3 function findStories(primedPaths) {
4 let pathNames = Object.keys(primedPaths);
5 let numPaths = pathNames.length;
6

7 let result = [];
8

9 pathNames.forEach ((pathName , currentPathIndex) => {
10 console.log(‘Finding stories in path ${currentPathIndex + 1}/${numPaths}‘);
11

12 let possibleStories = findAllPossibleStories(primedPaths[pathName ]);
13

14 console.log(‘ - Found ${possibleStories.length} possible stories ‘);
15

16 possibleStories.forEach (( possibleStory) => {
17 if(resultContainsStory(result , possibleStory)) {
18 return;
19 }
20

21 let storyMatches = 1;
22

23 pathNames.forEach (( otherPathName , otherPathIndex) => {
24 if(otherPathIndex <= currentPathIndex) {
25 return;
26 }
27

28 let otherPath = primedPaths[otherPathName ];
29

30 if(pathContainsStory(otherPath , possibleStory)) {
31 storyMatches ++;
32 }
33 });
34

35 if(storyMatches >= 2) {
36 let stepCommonalities = possibleStory
37 .map((step) => {
38 let occurrances = pathNames
39 .filter (( pathName) =>

primedPaths[
pathName ]. includes(
step))

40 .length;
41 return storyMatches / occurrances;
42 });
43

44 let stepCommonalitiesSorted = stepCommonalities.sort();
45

46 let commonalityHelp = stepCommonalities
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47 .map(( stepCommonality) => {
48 return { stepCommonality , sum: 1 };
49 })
50 .reduce ((a, b) => {
51 return {
52 stepCommonality: a.stepCommonality + b

.stepCommonality ,
53 sum: a.sum + b.sum
54 };
55 }, { stepCommonality: 0, sum: 0 });
56 commonalityAvg = commonalityAvg.toFixed (2);
57

58 let commonalityAvg = commonalityHelp.stepCommonality / commonalityHelp.sum
;

59

60 let numCommonalities = stepCommonalities.length;
61 let commonalityMedian;
62 if(numCommonalities % 2 == 0) {
63 commonalityMedian = (stepCommonalitiesSorted[Math.floor((

numCommonalities - 1) / 2)] +
64 stepCommonalitiesSorted[Math.ceil((

numCommonalities - 1) / 2)] ) / 2;
65 }
66 else {
67 commonalityMedian = stepCommonalitiesSorted [( numCommonalities - 1) /

2];
68 }
69 commonalityMedian = commonalityMedian.toFixed (2);
70

71 result.push({ story: possibleStory , weight: storyMatches , commonalityAvg ,
commonalityMedian , stepCommonalities });

72 }
73 });
74 });
75

76 return result;
77 }
78

79 function findAllPossibleStories(path) {
80 let stories = [];
81 for(let i = 2; i < path.length; i++) {
82 stories = stories.concat(pickStory(i, path));
83 }
84

85 return stories;
86 }
87

88 function pickStory(picksLeft , path) {
89 if(picksLeft == 0) {
90 return [ [] ];
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91 }
92

93 let stories = [];
94

95 for(let i = 0; i < path.length; i++) {
96 let pick = path[i];
97 let remainder = path.slice(i + 1);
98 if(remainder.length >= picksLeft) {
99 let endings = pickStory(picksLeft - 1, remainder);

100 endings.forEach (( ending) => {
101 stories.push([ pick ]. concat(ending));
102 });
103 }
104 }
105

106 return stories;
107 }
108

109 function resultContainsStory(result , story) {
110 return result.some((entry) => {
111 let existingStory = entry.story;
112 if(story.length != existingStory.length) {
113 return false;
114 }
115 if(story.some((step , stepIndex) => existingStory[stepIndex] != step)) {
116 return false;
117 }
118 return true;
119 });
120 }
121

122 function pathContainsStory(path , story) {
123 if(story.length == 0) {
124 return true;
125 }
126

127 let firstStep = story [0];
128 let start = path.findIndex ((v) => v == firstStep);
129

130 if(start === -1) {
131 return false;
132 }
133

134 let allMatch = pathContainsStory(path.slice(start + 1), story.slice (1));
135

136 if(allMatch) {
137 return true;
138 }
139

140 return pathContainsStory(path.slice(start + 1), story);
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141 }

Listing E.7: findStories.js

1 module.exports = findGroupPrecedences;
2

3 function findGroupPrecedences(primedPaths) {
4 let pathNames = Object.keys(primedPaths);
5 let numPaths = pathNames.length;
6

7 let result = [];
8

9 pathNames.forEach ((pathName , currentPathIndex) => {
10 console.log(‘Finding group precedences in path ${currentPathIndex + 1}/${numPaths

}‘);
11

12 let possibleGroupPrecedences = findAllPossibleGroupPrecedences(primedPaths[
pathName ]);

13

14 console.log(‘ - Found ${possibleGroupPrecedences.length} possible group
precendences ‘);

15

16 possibleGroupPrecedences.forEach (( possibleGroupPrecedence) => {
17 if(resultContainsGroupPrecedence(result , possibleGroupPrecedence)) {
18 return;
19 }
20

21 let groupPrecedenceMatches = 1;
22

23 pathNames.forEach (( otherPathName , otherPathIndex) => {
24 if(otherPathIndex <= currentPathIndex) {
25 return;
26 }
27

28 let otherPath = primedPaths[otherPathName ];
29

30 if(pathContainsGroupPrecedence(otherPath , possibleGroupPrecedence)) {
31 groupPrecedenceMatches ++;
32 }
33 });
34

35 if(groupPrecedenceMatches >= 2) {
36 let stepCommonalities = possibleGroupPrecedence.preceeders
37 .concat ([ possibleGroupPrecedence.result ])
38 .map((step) => {
39 let occurrances = pathNames
40 .map(( pathName) =>

primedPaths[
pathName ]. includes(

120



step))
41 .filter (( present) =>

present)
42 .length;
43 return groupPrecedenceMatches /

occurrances;
44 });
45

46 let stepCommonalitiesSorted = stepCommonalities.sort();
47

48 let commonalityHelp = stepCommonalities
49 .map(( stepCommonality) => {
50 return { stepCommonality , sum: 1 };
51 })
52 .reduce ((a, b) => {
53 return {
54 stepCommonality: a.stepCommonality + b

.stepCommonality ,
55 sum: a.sum + b.sum
56 };
57 }, { stepCommonality: 0, sum: 0 });
58

59 let commonalityAvg = commonalityHelp.stepCommonality / commonalityHelp.sum
;

60 commonalityAvg = commonalityAvg.toFixed (2);
61

62 let numCommonalities = stepCommonalities.length;
63 let commonalityMedian;
64 if(numCommonalities % 2 == 0) {
65 commonalityMedian = (stepCommonalitiesSorted[Math.floor((

numCommonalities - 1) / 2)] +
66 stepCommonalitiesSorted[Math.ceil((

numCommonalities - 1) / 2)] ) / 2;
67 }
68 else {
69 commonalityMedian = stepCommonalitiesSorted [( numCommonalities - 1) /

2];
70 }
71 commonalityMedian = commonalityMedian.toFixed (2);
72

73 result.push({ groupPrecedence: possibleGroupPrecedence , weight:
groupPrecedenceMatches , commonalityAvg , commonalityMedian ,
stepCommonalities });

74 }
75 });
76 });
77

78 return result;
79 }
80
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81 function findAllPossibleGroupPrecedences(path) {
82 let groupPrecedences = [];
83 for(let i = 2; i < path.length - 1; i++) {
84 let numberOfPreceedersToPick = i;
85 groupPrecedences = groupPrecedences.concat(pickGroupPrecedences(

numberOfPreceedersToPick , path));
86 }
87

88 return groupPrecedences;
89 }
90

91 function pickGroupPrecedences(numberOfPreceedersToPick , path) {
92 if(numberOfPreceedersToPick == 0) {
93 return path.map(( result) => {
94 return { preceeders: [], result };
95 });
96 }
97

98 let groupPrecedences = [];
99

100 for(let i = 0; i < path.length; i++) {
101 let pick = path[i];
102 let remainder = path.slice(i + 1);
103 if(remainder.length >= numberOfPreceedersToPick) {
104 let endings = pickGroupPrecedences(numberOfPreceedersToPick - 1, remainder);
105 endings.forEach (( ending) => {
106 groupPrecedences.push({
107 result: ending.result ,
108 preceeders: [ pick ]. concat(ending.preceeders)
109 });
110 });
111 }
112 }
113

114 return groupPrecedences;
115 }
116

117 function resultContainsGroupPrecedence(result , groupPrecedence) {
118 return result.some((entry) => {
119 let existingGroupPrecedence = entry.groupPrecedence;
120 if(groupPrecedence.preceeders.length != existingGroupPrecedence.preceeders.length)

{
121 return false;
122 }
123 if(groupPrecedence.preceeders.some((step , stepIndex) => existingGroupPrecedence.

preceeders[stepIndex] != step)) {
124 return false;
125 }
126 if(groupPrecedence.result != existingGroupPrecedence.result) {
127 return false;
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128 }
129 return true;
130 });
131 }
132

133 function pathContainsGroupPrecedence(path , groupPrecedence , highestIndex) {
134 if(! highestIndex) {
135 highestIndex = 0;
136 }
137

138 if(groupPrecedence.preceeders.length == 0) {
139 let resultIndex = path.lastIndexOf(groupPrecedence.result);
140 return resultIndex !== -1 && resultIndex > highestIndex;
141 }
142

143 let firstStep = groupPrecedence.preceeders [0];
144 let start = path.findIndex ((v) => v == firstStep);
145

146 if(start === -1) {
147 return false;
148 }
149

150 if(start > highestIndex) {
151 highestIndex = start;
152 }
153

154 let remainder = {
155 preceeders: groupPrecedence.preceeders.slice (1),
156 result: groupPrecedence.result
157 };
158

159 return pathContainsGroupPrecedence(path , remainder , highestIndex);
160 }

Listing E.8: findGroupPrecedences.js
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Appendix F

Similarity table

Table F.1 shows the similarities between the steps identified in the architecture
evolution paths under study. A full list of the architecture evolution paths we
identified can be found in appendix D.

The table shows exact overlap (the steps describe the exact same change)
by simply listing the overlapping step in the Overlap-column next to the step.
For steps that are merely similar (not an exact overlap, but similar in intent
and impact), the step is prefaced with a tilde (∼), and likewise listed in the
Overlap-column.
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Step Overlap Step Overlap Step Overlap
a.1 c.1, d.1 c.2 a.2, ∼ b.1, ∼ d.2, ∼ e.2 e.2 ∼ a.2, ∼ b.1, ∼ c.2, ∼ d.2
a.2 ∼ b.1, c.2, ∼ d.2, ∼ e.2 c.3 a.6, f.5 e.3 ∼ a.4, ∼ c.6, ∼ f.3, ∼ f.7
a.3 c.4 ∼ a.9, ∼ b.3, ∼ c.8.b, ∼ c.11,

∼ c.12, ∼ e.5, ∼ f.8, ∼ f.12
e.4 f.9

a.4 ∼ c.6, ∼ e.3, f.3, ∼ f.7 c.5 e.5 ∼ a.9, ∼ b.3, ∼ c.4, ∼ c.8.b,
∼ c.11, ∼ c.12, ∼ f.8, ∼ f.12

a.5 c.6 ∼ a.4, f.7, ∼ e.3, ∼ f.3 e.6 a.7, c.8.a
a.6 c.3, f.5 c.7 e.7 ∼ c.9
a.7 c.8.a, e.6 c.8.a a.7, e.6 f.1
a.8 c.8.b ∼ a.9, ∼ b.3, ∼ c.4, ∼ c.11,

∼ c.12, ∼ e.5, ∼ f.8, ∼ f.12
f.2

a.9 b.3, ∼ c.4, ∼ c.8.b, ∼ c.11,
∼ c.12, ∼ e.5, f.8, ∼ f.12

c.8.c ∼ b.4.b, ∼ b.6, ∼ c.13, ∼ f.13 f.3 a.4, ∼ c.6, ∼ e.3, ∼ f.7

b.1 ∼ a.2, ∼ c.2, ∼ d.2, ∼ e.2 c.9 ∼ e.7 f.4
b.2 c.10 f.5 a.6, c.3
b.3 a.9, ∼ c.4, ∼ c.8.b, ∼ c.11,

∼ c.12, ∼ e.5, f.8, ∼ f.12
c.11 ∼ a.9, ∼ b.3, ∼ c.4, ∼ c.8.b,

∼ c.12, ∼ e.5, ∼ f.8, ∼ f.12
f.6 ∼ d.4

b.4.a b.5 c.12 ∼ a.9, ∼ b.3, ∼ c.4, ∼ c.8.b,
∼ c.11, ∼ e.5, ∼ f.8, ∼ f.12

f.7 c.6, ∼ a.4, ∼ e.3, ∼ f.3

b.4.b ∼ b.6, ∼ c.8.c, ∼ c.13,
∼ f.13

c.13 ∼ b.4.b, ∼ b.6, ∼ c.8.c, ∼ f.13 f.8 a.9, b.3, ∼ c.4, ∼ c.8.b, ∼ c.11,
∼ c.12, ∼ e.5, ∼ f.12

b.5 b.4.a d.1 a.1, c.1 f.9 e.4
b.6 ∼ b.4.b, ∼ c.8.c, ∼ c.13,

∼ f.13
d.2 ∼ a.2, ∼ b.1, ∼ c.2, ∼ e.2 f.10 ∼ d.3

b.7 d.3 ∼ f.10 f.11
c.1 a.1, d.1 d.4 ∼ f.6 f.12 ∼ a.9, ∼ b.3, ∼ c.4, ∼ c.8.b,

∼ c.11, ∼ c.12, ∼ e.5, ∼ f.8
e.1 f.13 ∼ b.4.b, ∼ b.6, ∼ c.8.c, ∼ c.13

Table F.1: Table of similarities of steps in our architecture paths.
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